Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (2): 25-31    DOI: 10.13995/j.cnki.11-1802/ts.021735
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
副干酪乳杆菌缓解由洛哌丁胺诱导的小鼠便秘的差异
杨树荣, 朱慧越, 乌翛冰, 孙姗姗, 司倩, 张秋香, 王琳琳, 王刚*, 赵建新, 张灏, 陈卫
(江南大学 食品学院,江苏 无锡,214122)
Analysis on the different effects of Lactobacillus paracasei in relieving constipation induced by loperamide in mice
YANG Shurong, ZHU Huiyue, WU Xiaobing, SUN Shanshan, SI Qian, ZHANG Qiuxiang, WANG Linlin, WANG Gang*, ZHAO Jianxin, ZHANG Hao, CHEN Wei
(School of Food Science and Technology, Jiangnan University, Wuxi 214122, China)
下载:  HTML   PDF (1151KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 该研究对4株副干酪乳杆菌LC2、LC3、LC38、FJSWX33-L2缓解便秘的效果进行了评价,并分析了其差异性效果的可能途径。将36只Balb/c雄性小鼠随机分成6组,空白组、模型组灌胃3%蔗糖溶液,其余各组灌胃副干酪乳杆菌,共14 d(109CFU/(d·只))。第15天到第30天,除继续前14 d的操作外,在此之前先灌胃洛哌丁胺悬液进行便秘模型建立。实验期间及实验结束后测定小鼠粪便含水量、排首粒黑便时间及小肠推进率;测定血清中酪酪肽、胃动素水平;测定结肠中5-羟色胺、结肠中神经营养因子-3水平;测定结肠中Aqp4、c-kit基因转录水平;测定粪便中短链脂肪酸的含量。结果表明,4株副干酪乳杆菌均有缓解便秘的功能,但4株菌在缓解便秘的途径中存在着差异。其中LC2能通过改善胃肠调节肽、神经营养因子、神经递质、短链脂肪酸水平、Aqp4和c-kit基因的转录水平缓解便秘症状,而其余3株菌缓解便秘的途径各有侧重。副干酪乳杆菌具有缓解便秘的潜力,但其缓解便秘的效果以及途径可能存在显著的菌株差异。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨树荣
朱慧越
乌翛冰
孙姗姗
司倩
张秋香
王琳琳
王刚
赵建新
张灏
陈卫
关键词:  副干酪乳杆菌  便秘  益生菌  短链脂肪酸    
Abstract: In this study, the effects of four strains of Lactobacillus paracasei LC2, LC3, LC38, and FJSWX33-L2 on constipation relief were evaluated, and the possible pathways of their differential effects were analyzed. Thirty-six Balb/c male mice were randomly divided into 6 groups. The normal group and the model group were intragastrically administered with 3% sucrose solution and the other groups were administered with L. paracasei for 14 days (109 CFU/ (d·each)). From the 15th day to the 30th day, except for the procedure same as the first 14 days, the suspension of loperamide was administered to establish a constipation model before gavage. The water content of the feces, the time to the first black stool and the rate of small bowel advancement were measured during the experiment; the levels of peptide tyrosine-tyrosine (PYY) and motilin in serum were determined; the levels of serotonin in the colon and neurotrophin-3 in the colon were measured; the transcription of Aqp4 and c-kit in the colon was detected; and the content of short-chain fatty acids (SCFAs) in the feces was also determined. All the four strains of L. paracasei showed the role of relieving constipation, while with differences in the pathway. LC2 could alleviate the constipation through the regulation on the level of PYY, NT-3, 5-HT, Aqp4, c-kit and SCFAs, whilst other three strains showed different ways to relieve constipation. It is indicated that L. paracasei has the potential to relieve constipation, while the effects on the constipation alleviation showed significant intra-species differences.
Key words:  Lactobacillus paracasei    constipation    probiotics    short-chain fatty acids
收稿日期:  2019-07-21                出版日期:  2020-01-25      发布日期:  2020-03-13      期的出版日期:  2020-01-25
基金资助: 国家重点研发计划资助项目(No.2017YFD0400600)
作者简介:  硕士研究生(王刚副教授为通讯作者,E-mail:wanggang@jiangnan.edu.cn)。
引用本文:    
杨树荣,朱慧越,乌翛冰,等. 副干酪乳杆菌缓解由洛哌丁胺诱导的小鼠便秘的差异[J]. 食品与发酵工业, 2020, 46(2): 25-31.
YANG Shurong,ZHU Huiyue,WU Xiaobing,et al. Analysis on the different effects of Lactobacillus paracasei in relieving constipation induced by loperamide in mice[J]. Food and Fermentation Industries, 2020, 46(2): 25-31.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.021735  或          http://sf1970.cnif.cn/CN/Y2020/V46/I2/25
[1] LEPORT J. Constipation[M].S.1:Elsevier Inc,2019.
[2] CHOI C H, CHANG S K. Alteration of gut microbiota and efficacy of probiotics in functional constipation[J]. Journal of Neurogastroenterology and Motility, 2015, 21(1):4-7.
[3] MANCABELLI L, MILANI C, LUGLI G A, et al. Unveiling the gut microbiota composition and functionality associated with constipation through metagenomic analyses[J]. Scientific Reports, 2017, 7(1):9 879.
[4] SINGH T P, KAUR G, MALIK R K, et al. Characterization of intestinal Lactobacillus reuteri strains as potential probiotics[J]. Probiotics & Antimicrobial Proteins, 2012, 4(1):47-58.
[5] 毛丙永. 功能性低聚糖对肠道细菌的影响及机制[D]. 无锡:江南大学, 2015.
[6] 李延青, 于岩波. 功能性便秘的诊断与治疗[J]. 中国实用内科杂志, 2011, 31(2):158-160.
[7] 王琳琳. 双歧杆菌对便秘的影响及其作用机理研究 [D]. 无锡:江南大学, 2017.
[8] YANG Z H, YU H J, PAN A, et al. Cellular mechanisms underlying the laxative effect of flavonol naringenin on rat constipation model[J]. PLoS ONE, 2008, 3(10):e3 348.
[9] LINLIN W, LUJUN H, QI X, et al. Bifidobacterium adolescentis exerts strain-specific effects on constipation induced by loperamide in BALB/c mice[J]. International Journal of Molecular Sciences, 2017, 18(2):318-340.
[10] NUNOI H, MATSUURA B, UTSUNOMIYA S, et al. A relationship between motilin and growth hormone secretagogue receptors[J]. Regulatory Peptides, 2012, 176(1-3):28-35.
[11] ZHAO X, SUO H, QIAN Y, et al. Therapeutic effects of Lactobacillus casei Qian treatment in activated carbon induced constipated mice[J]. Molecular Medicine Reports, 2015, 12(2): 3 191-3 199.
[12] 闫媛, 董蕾. 消化道酪酪肽的作用和受体分布[J]. 国际消化病杂志, 2003,23(6):372-374.
[13] WANG L, GOURCAROL G, YUAN P Q, et al. Peripheral peptide YY inhibits propulsive colonic motor function through Y2 receptor in conscious mice[J]. American Journal of Physiology Gastrointestinal & Liver Physiology, 2010, 298(1):45-56.
[14] FEDERICO A, DALLIO M, TOLONE S, et al. Gastrointestinal hormones, intestinal microbiota and metabolic homeostasis in obese patients: Effect of bariatric surgery[J]. Vivo, 2016, 30(3):321-330.
[15] 朱敏佳,杨泽俊,王菲菲,等.肠嗜铬细胞与胃肠道疾病的研究进展[J].世界华人消化杂志, 2019, 27(2):117-124.
[16] 李小兰,江敏,阮征,等.色氨酸及其代谢产物5-HT对肠道功能的作用综述[J].食品安全质量检测学报, 2014,5(7):1 997-2 002.
[17] 赵香花.新5-羟色胺4受体激动剂SHR116958促进胃肠蠕动的药理作用[D].上海:中国人民解放军海军军医大学, 2009.
[18] SPENCER N J. Constitutively active 5-HT receptors: An explanation of how 5-HT antagonists inhibit gut motility in species where 5-HT is not an enteric neurotransmitter? [J]. Frontiers in Cellular Neuroscience, 2015,9:487-492.
[19] LUND M L, EGEROD K L, ENGELSTOFT M S, et al. Enterochromaffin 5-HT cells - A major target for GLP-1 and gut microbial metabolites [J]. Molecular metabolism, 2018,11:70-83.
[20] FUKUMOTO S, TATEWAKI M, YAMADA T, et al. Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats[J]. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 2003, 284(5):R1 269-R1 276.
[21] PARKMAN H P, RAO S S C, REYNOLDS J C, et al. Neurotrophin-3 improves functional constipation[J]. American Journal of Gastroenterology, 2003, 98(6):1 338-1 347.
[22] COULIE B, SZARRKA L A, CAMILLERI M, et al. Recombinant human neurotrophic factors accelerate colonic transit and relieve constipation in humans[J]. Gastroenterology, 2000, 119(1):41-50.
[23] 侯晓华,陈建德. Cajal间质细胞在胃肠运动中的作用[J].中华消化杂志, 2001,21(6):360-362.
[24] 包云光,舒小莉,李小兵,等.肠神经系统递质和Cajal间质细胞在大鼠慢传输型便秘中的作用[J]. 中国当代儿科杂志, 2009, 11(6):481-485.
[25] 贾后军,童卫东,刘宝华.胃肠道Cajal间质细胞与干细胞因子/c-kit信号途径关系[J].医学研究生学报, 2010, 23(2):192-195.
[26] LI C, NIE S P, ZHU K X, et al. Effect of Lactobacillus plantarum NCU116 on loperamide-induced constipation in mice[J]. International Journal of Food Sciences and Nutrition, 2015, 66(5): 533-538.
[27] IKARASHI N, KON R, SUGIYAMA K. Aquaporins in the colon as a new therapeutic target in diarrhea and constipation[J]. International Journal of Molecular Sciences, 2016, 17(7):1 172.
[28] 李立胜,王俊平.洛哌丁胺对腹泻模型大鼠结肠水通道蛋白4表达的影响[J].胃肠病学和肝病学杂志, 2009, 18(1):57-59.
[29] 方圆之,高杰.白芍的通便作用及其对便秘小鼠结肠AQP4、VIP表达的影响[J].山东中医杂志, 2017,36(1):62-65.
[30] EDWARDS C A. Short chain fatty acids. Production and effects on gut motility[J]. Oxygen Transport to Tissue XXXIII, 1997, 427(7):155-167.
[31] 陈燕,曹郁生,刘晓华.短链脂肪酸与肠道菌群[J].江西科学, 2006, 24(1):38-40;69.
[32] HURST N R, KENDIG D M, MURTHY K S, et al. The short chain fatty acids, butyrate and propionate, have differential effects on the motility of the guinea pig colon[J]. Neurogastroenterology & Motility, 2014, 26(11):1 586-1 596.
[33] DASS N B, JOHN A K, BASSIL A K, et al. The relationship between the effects of short-chain fatty acids on intestinal motility in vitro and GPR43 receptor activation[J]. Neurogastroenterology and Motility, 2007, 19(1):66-74.
[1] 史瑛, 冯欣静, 周志磊, 姬中伟, 徐岳正, 毛健. 黄酒多糖对炎症性肠病及便秘作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(9): 275-283.
[2] 姜甜, 陆文伟, 崔树茂, 张灏, 赵建新. 静电喷雾干燥微囊化乳双歧杆菌BL03[J]. 食品与发酵工业, 2021, 47(7): 27-33.
[3] 朱慧越, 邹仁英, 许梦舒, 王琳琳, 田培郡, 陈卫, 王刚. 短链脂肪酸-酰化淀粉对小鼠抑郁样行为的缓解及机制[J]. 食品与发酵工业, 2021, 47(6): 26-33.
[4] 王楠, 田晗, 张文晓, 白筱翠, 肖纯凌. 两株具有潜在益生作用的人源链球菌的安全性评价[J]. 食品与发酵工业, 2021, 47(5): 12-16.
[5] 邹仁英, 朱慧越, 许梦舒, 田培郡, 张灏, 赵建新, 陈卫, 王刚. “精神益生菌”对慢性应激诱导的抑郁和便秘症状的缓解及机制研究[J]. 食品与发酵工业, 2021, 47(3): 1-9.
[6] 李霞, 陈海鸥, 韩淑芳, 陆凤莹, 周玉恒, 单杨, 李静. 羧甲基化木聚糖的益生元作用研究[J]. 食品与发酵工业, 2021, 47(2): 45-50.
[7] 刘春雨, 衣大龙, 杨玉亮, 辛瑜, 顾正华, 刘怀高, 郭自涛, 张梁. 牦牛骨胶原蛋白肽体外调节肠道菌群的研究[J]. 食品与发酵工业, 2021, 47(16): 59-65.
[8] 胡鹏钰, 于俊娟, 王鹏, 张臣臣, 康文丽, 戴智勇, 汪家琦, 潘丽娜, 顾瑞霞. 母乳来源益生菌的筛选及潜在益生特性研究[J]. 食品与发酵工业, 2021, 47(14): 190-195.
[9] 胡国奥, 詹晓北, 李志涛, 朱莉, 赵志超, 张洪涛. 低谷蛋白大米在仿生大肠反应器中对肠道菌群结构及代谢的影响[J]. 食品与发酵工业, 2021, 47(13): 23-29.
[10] 王东旭, 尹成男, 叶华, 郭元新. 热灭活鼠李糖乳杆菌HN001对DSS诱导的小鼠结肠炎保护作用[J]. 食品与发酵工业, 2021, 47(13): 30-35.
[11] 张林奇, 王晓蕊, 史畅, 彭禹熙, 杜丽平. 益生菌粉中活菌稳定性及其耐受模拟胃肠液的研究[J]. 食品与发酵工业, 2021, 47(13): 36-42.
[12] 伍鹏, 王娟, 王晶晶, 陈晓东, 司徒文佑, 段素芳. 基于仿生胃肠道模型的发酵乳中益生菌存活率评价[J]. 食品与发酵工业, 2021, 47(12): 147-153.
[13] 刘卫宝, 余讯, 徐静静, 詹晓北, 张洪涛, 朱莉. 黄芪多糖的分离、结构表征及益生活性研究[J]. 食品与发酵工业, 2020, 46(7): 50-56.
[14] 王瑛, 林钰清, 李爱军, 林启豪, 薛雪, 王洪飞, 陈琬颖. 重金属危害机制及益生菌清除重金属机制研究进展[J]. 食品与发酵工业, 2020, 46(3): 281-292.
[15] 迟珺曦, 雷文平, 刘孝芳, 刘成国. 干酪乳杆菌LC-7在牛乳中的生长及发酵特性[J]. 食品与发酵工业, 2020, 46(22): 208-213.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn