Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (2): 85-93    DOI: 10.13995/j.cnki.11-1802/ts.021979
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
熟化紫薯片微波干燥特性及数学模型
宋树杰*, 王蒙
(陕西师范大学 食品工程与营养科学学院,陕西 西安,710119)
Microwave drying characteristics and kinetic model of cooked purple sweet potato slice
SONG Shujie*, WANG Meng
(College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi′an 710119, China)
下载:  HTML   PDF (1106KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以熟化紫薯片为研究对象,利用可调微波干燥机干燥熟化紫薯片,探讨不同微波功率、装载量和切片厚度对熟化紫薯片的干燥特性、水分有效扩散系数及色泽的影响,通过SPSS软件对试验数据进行数学模型拟合,得到熟化紫薯片微波干燥模型。结果表明,熟化紫薯片的微波干燥过程表现为恒速干燥;微波功率、装载量和切片厚度对熟化紫薯的微波干燥特性均有一定影响,微波功率和装载量对其影响最为显著;微波功率越大、装载量越小、切片厚度越小,物料的干燥速率越大。熟化紫薯片微波干燥过程中的水分有效扩散系数随着微波功率与切片厚度的增大、加载量的减小而增大,其最大值为1.135 4×10-8 m2/s,其平均活化能为4.893 8 W/g;当微波功率较大、装载量较小时得到的干燥熟化紫薯片品质较差,而切片厚度对其影响不显著。所选用的6个模型中,Modified Page模型具有最大的确定系数R2(0.999 7),最低的RMSE(0.006 1)和最小的χ2(0.000 5),是熟化紫薯片微波干燥的最佳模型,可有效描述熟化紫薯片微波干燥过程中的水分随时间的变化规律。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋树杰
王蒙
关键词:  熟化紫薯片  微波  干燥特性  动力学  数学模型    
Abstract: Based on the cooked purple sweet potato slices (CPSPS), the effects of microwave power, loading and slice thickness on the drying characteristics, its effective moisture diffusion coefficient (EMDC) of water and color of CPSPS were studied. SPSS software was applied to analyze data and optimize the mathematical model of PSPS drying. The result showed that microwave drying process of PSPSs can be divided into three stages: rising rate drying period, constant drying rate stage and falling rate drying period. Microwave power, loading and slice thickness have a certain influence on the microwave drying characteristics of CPSPS. However, the effect of slice thickness was less significant than microwave power and loading. EMDC increased with the increase of microwave power and slice thickness and the decrease of loading. The maximum EMDC was 1.135 4×10-8 m2/s and the value of Ea was 4.893 8 W/g. Of the six models, the Modified Page model had the highest coefficient of determination R2 (0.999 7), the lowest chi-square χ2 (0.000 5) and root mean square RMSE (0.006 1), and it is the optimum model of the PSPS in microwave drying.
Key words:  cooked purple sweet potato slices    microwave    drying characteristics    kinetics    mathematical model
收稿日期:  2019-08-13                出版日期:  2020-01-25      发布日期:  2020-03-13      期的出版日期:  2020-01-25
基金资助: 中央高校基本科研业务费专项(GK201803070)
作者简介:  博士,讲师(本文通讯作者,E-mail:foodssj@snnu.edu.cn)。
引用本文:    
宋树杰,王蒙. 熟化紫薯片微波干燥特性及数学模型[J]. 食品与发酵工业, 2020, 46(2): 85-93.
SONG Shujie,WANG Meng. Microwave drying characteristics and kinetic model of cooked purple sweet potato slice[J]. Food and Fermentation Industries, 2020, 46(2): 85-93.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.021979  或          http://sf1970.cnif.cn/CN/Y2020/V46/I2/85
[1] HE K, YE X, LI X, et al. Separation of two constituents from purple sweet potato by combination of silica gel column and high-speed counter-current chromatography [J]. Journal of Chromatography B, 2012, 881: 49-54.
[2] TRUONG V D, DEIGHTON N, THOMPSON R T, et al. Characterization of anthocyanins and anthocyanidins in purple-fleshed sweet potatoes by HPLC-DAD/ESI-MS/MS[J]. Journal of Agricultural and Food Chemistry, 2010, 58(1): 404-410.
[3] YANG J, GADI R L. Effects of steaming and dehydration on anthocyanins, antioxidant activity, total phenols and color characteristics of purple-fleshed sweet potatoes (Ipomoea batatas) [J]. American Journal of Food Technology, 2008, 3(4): 224-234.
[4] ZHANG Z F, FAN S H, ZHENG Y L, et al. Purple sweet potato color attenuates oxidative stress and inflammatory response induced by D-galactose in mouse liver[J]. Food and Chemical Toxicology, 2009, 47(2): 496-501.
[5] 米谷, 薛文通, 张惠. 中国甘薯的研究现状与应用前景:中国农业工程学会农产品加工及贮藏工程分会学术年会暨中国中部地区农产品加工产学研研讨会论文集[C].北京:中国农业工程学会, 2007:71-75.
[6] 李菁, 萧夏, 蒲晓璐, 等. 紫薯热风干燥特性及数学模型[J]. 食品科学, 2012, 33(15): 90-94.
[7] WANG S M, YU D J, SONG K B. Quality characteristics of purple sweet potato (Ipomoea batatas) slices dehydrated by the addition of maltodextrin[J]. Horticulture, Environment, and Biotechnology, 2011, 52(4): 435-441.
[8] AHMED M, AKTER M S, LEE J C, et al. Encapsulation by spray drying of bioactive components, physicochemical and morphological properties from purple sweet potato[J]. LWT-Food Science and Technology, 2010, 43(9): 1 307-1 312.
[9] 汤富蓉. 紫色甘薯全粉加工关键技术的研究[D]. 成都: 西华大学, 2011.
[10] 李文峰, 肖旭霖, 王玮. 紫薯气体射流冲击干燥效率及干燥模型的建立[J]. 中国农业科学, 2013, 46(2): 356-366.
[11] 袁建, 赵腾, 丁超, 等. 微波处理对稻谷品质及脂肪酶活性的影响[J]. 中国农业科学, 2018, 51(21): 4 131-4 142.
[12] 李辉, 林河通, 袁芳, 等. 荔枝果肉微波真空干燥特性与动力学模型[J]. 农业机械学报, 2012, 43(6): 107-112.
[13] DADALI G, KILIS A D, ÕZBEK B. Microwave drying kinetics of okra [J]. Drying Technology, 2007, 25(5): 917-924.
[14] SOYSAL A, ÕZTEKIN S, EREN Õ. Microwave drying of parsley: Modelling, kinetics, and energy aspects[J]. Biosystems Engineering, 2006, 93(4): 403-413.
[15] 王鹤, 慕松, 吴俊, 等. 基于Weibull分布函数的枸杞微波干燥过程模拟及应用[J]. 现代食品科技, 2018, (1):141-147.
[16] 叶欣, 黄晓兵, 胡洋, 等. 龙眼果肉微波干燥特性及干燥模型研究[J]. 食品科技,2012,37(12):67-71.
[17] DADALl G, APAR D K, ÕZBEK B. Estimation of effective moisture diffusivity of okra for microwave drying[J]. Drying Technology, 2007, 25(9): 1 445-1 450.
[18] SOYSAL A, OZTEKIN S, EREN Õ. Microwave drying of parsley: modelling, kinetics, and energy aspects[J]. Biosystems Engineering, 2006, 93(4): 403-413.
[19] VEGA-MERCADO H, GÓNGORA-NIETO M M, BARBOSA-CÁNOVAS G V. Advances in dehydration of foods[J]. Journal of Food Engineering, 2001, 49(4): 271-289.
[20] 朱德泉, 王继先, 钱良存, 等. 猕猴桃切片微波真空干燥工艺参数的优化[J]. 农业工程学报, 2009(3): 248-252.
[21] GIRI S K, PRASAD S. Optimization of microwave-vacuum drying of button mushrooms using response-surface methodology[J]. Drying technology, 2007, 25(5): 901-911.
[22] FIGIEL A. Drying kinetics and quality of vacuum-microwave dehydrated garlic cloves and slices [J]. Journal of Food Engineering, 2009, 94(1): 98-104.
[23] GB 5009.3—2010,食品中水分的测定[S]. 北京:中国标准出版社, 2010.
[24] FALADE K O, SOLADEMI O J. Modelling of air drying of fresh and blanched sweet potato slices [J]. International Journal of Food Science and Technology, 2010, 45(2): 278-288.
[25] WANG Z F, SUN J H, LIAO X, et al. Mathematical modeling on hot air drying of thin layer apple pomace [J]. Food Research International, 2007, 40(1): 39-46.
[26] WHITE G M, ROSS I J, PONELET C G. Fully exposed drying of popcorn [J]. Transactions of the American Society of Agricultural Engineers, 1981, 24(2): 466-468.
[27] CHKIR I, BALTI M A, AYEDA L, et al. Effects of air drying properties on drying kinetics and stability of cactus/brewer’s grains mixture fermented with lactic acid bacteria [J]. Food and Bioproducts Processing, 2015, 94: 10-19.
[28] BAINI R, LANGRISH T A G. Choosing an appropriate drying model for intermittent and continuous drying of bananas [J]. Journal of Food Engineering, 2007, 79(1): 330-343.
[29] O’CALLAGHAN J R, MENZIES D J, BAILEY P H. Digital simulation of agricultural dryer performance [J]. Journal of Agricultural Engineering Research, 1971, 16(3): 223-244.
[30] WANG Z, SUN J, CHEN F, et al. Mathematical modelling on thin layer microwave drying of apple pomace with and without hot air pre-drying [J]. Journal of Food Engineering, 2007, 80(2): 536-544.
[31] ERTEKIN C, YALDIZ O. Drying of eggplant and selection of a suitable thin layer drying model [J]. Journal of Food Engineering, 2004, 63(3): 349-359.
[32] 吕为乔, 韩清华, 李树君, 等. 微波干燥姜片模型建立与去水机理分析[J]. 农业机械学报, 2015,46(4): 233-237.
[33] 张乐, 赵守涣, 王赵改, 等. 板栗微波真空干燥特性及干燥工艺研究[J]. 食品与机械, 2018,34(4): 206-210.
[34] 文静, 代建武, 张黎骅. 苹果片微波间歇干燥特性及模型拟合[J]. 食品与发酵工业, 2019, 45(4): 81-88.
[1] 朱俊成, 冯鑫, 李璐思, 马良, 戴宏杰, 付余, 黄少林, 张宇昊. 不同干燥方式对明胶特性的影响[J]. 食品与发酵工业, 2021, 47(8): 34-39.
[2] 郭金喜, 马燕, 范田丽, 杨光勇, 马君刚. 微波消解-电感耦合等离子体串联质谱法测定新疆黑枸杞红酒中微量元素的主成分分析[J]. 食品与发酵工业, 2021, 47(8): 243-249.
[3] 杨菊, 毛银, 黄晓强, 周胜虎, 邓禹. 计算设计改造Thermobifida fusca 5-羧基-2-戊烯酰-辅酶A还原酶促进己二酸生产[J]. 食品与发酵工业, 2021, 47(7): 1-7.
[4] 朱琳, 郭全友. 底物和环境因子对鱼源腐败希瓦氏菌和假单胞菌生长动力学的影响[J]. 食品与发酵工业, 2021, 47(7): 58-63.
[5] 吴清孝, 张海龙, 秦小明, 谌素华. 金花茶花浸提物与消化蛋白酶的相互作用[J]. 食品与发酵工业, 2021, 47(7): 130-136.
[6] 余瞻, 赵福权, 徐成龙, 王珍珍, 张泽鑫, 沙如意, 毛建卫. 红茶菌中细菌纤维素产生菌的筛选、鉴定及其发酵动力学模型构建[J]. 食品与发酵工业, 2021, 47(6): 92-98.
[7] 邓维良, 柴纬明, 罗麟霜. 利巴韦林抗酪氨酸酶活性及其在贡梨中的保鲜应用[J]. 食品与发酵工业, 2021, 47(5): 162-167.
[8] 刘瑞, 陶乐仁, 万康. 微波处理对‘新大坪'马铃薯贮藏品质的影响[J]. 食品与发酵工业, 2021, 47(5): 168-173.
[9] 王少曼, 张彦军, 吴刚, 徐飞, 胡荣锁, 谭乐和. 菠萝蜜果酒分批发酵动力学模型研究[J]. 食品与发酵工业, 2021, 47(4): 74-79.
[10] 王文成, 胡银凤, 饶建平, 谢建华. 微波真空干燥速溶绿茶工艺优化[J]. 食品与发酵工业, 2021, 47(4): 202-207.
[11] 牟方婷, 袁美, 石黎琳, 曾凡坤, 陈嘉, 张玉. 超声和微波辅助果胶酶处理对果胶结构的影响[J]. 食品与发酵工业, 2021, 47(4): 215-221.
[12] 江波, 陈林. 微波等离子体原子发射光谱分析富硒农产品中总硒[J]. 食品与发酵工业, 2021, 47(20): 247-252.
[13] 江飞凤, 谭晓辉, 胡鹏刚, 潘雪梅, 闫锦. 超声-微波协同提取柚子皮多糖工艺优化及单糖组成、结构和抗氧化活性分析[J]. 食品与发酵工业, 2021, 47(2): 196-204.
[14] 苗周迪, 陈希文, 彭政, 冒鑫哲, 堵国成, 张娟. 基于理性设计提高枯草芽孢杆菌角蛋白酶的热稳定性[J]. 食品与发酵工业, 2021, 47(19): 50-56.
[15] 陶大炜, 张小丹, 宁喜斌, 孙梦洁. 复合诱变选育高产α-环糊精葡萄糖基转移酶的菌株及产酶条件优化[J]. 食品与发酵工业, 2021, 47(19): 63-70.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn