Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (4): 54-59    DOI: 10.13995/j.cnki.11-1802/ts.022000
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
体外模拟发酵对咖啡理化性质及品质的影响
弘子姗, 谭超*, 杨宁
(云南农业大学 食品科学技术学院,云南 昆明,650201)
Effects of in vitro digestion on the physicochemical property and quality of Arabica coffee
HONG Zishan, TAN Chao*, YANG Ning
(College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China)
下载:  HTML   PDF (3368KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以云南阿拉比卡卡蒂姆咖啡为原料进行体外模拟发酵,分析不同阶段咖啡理化性质及品质因子变化,并以美国精品咖啡协会评分标准对烘焙后咖啡杯测,结合Pearson,分析杯测指标与理化特征成分、风味特征成分间关联性。结果表明,咖啡生豆经10~12 h浸泡充分吸胀,渗出物少。复水咖啡豆多糖、脂肪含量显著下降(P<0.05),还原糖、总蛋白、可溶性蛋白和酚类变化均不显著(P>0.05)。在发酵过程中多糖先呈现下降趋势,至8 h含量达到最低(3.22±0.28)%(质量分数),而后又显著上升(P<0.05);还原糖含量呈现逐渐上升趋势,至8 h含量达到最高,而后又显著下降(P<0.05);脂肪在发酵2 h后变化均不显著(P>0.05);总蛋白含量先下降而后上升再下降,在6 h含量最高为(8.54±0.17)%(质量分数);可溶性蛋白、酚类发酵2 h后下降趋势显著(P<0.05);膳食纤维、灰分均未发生显著变化(P>0.05)。咖啡豆游离氨基酸中谷氨酸含量占比最高,其次为天门冬氨酸、赖氨酸和亮氨酸,不同发酵阶段游离氨基酸随发酵时间的增减变化无规律。咖啡风味特征成分绿原酸和柠檬酸随发酵阶段逐渐增加,苹果酸含量减少,咖啡因含量基本不变。绿原酸会极显著影响咖啡风味表现,柠檬酸和苹果酸含量高低决定了咖啡的酸质,可溶性蛋白含量高低影响咖啡余韵,多糖、灰分、葫芦巴碱、奎宁酸过高则会降低咖啡杯品醇厚度。该研究为益生菌发酵咖啡的创新加工,清洁化、批量化生产提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
弘子姗
谭超
杨宁
关键词:  咖啡  体外模拟  发酵  理化性质    
Abstract: Using Yunnan Arabica coffee as raw material for in vitro simulated fermentation, the physicochemical property and the precusor substances at different stages was analyzed and cupped by SCA (The Specialty Coffee Association of America) coffee cupping for analyzing the relationship between coffee cupping and physicochemical and flavor characteristics by Pearson analysis. The results showed that the water absorption and expansion rate of green beans increased as immersion time increased to 10-12 h. The polysaccharide and fat in rehydrated beans decreased significantly (P<0.05), and the changes of reducing sugar, total protein, soluble protein, phenols were not significant (P>0.05). During the simulated digestion, polysaccharide decreased to the lowest(3.22±0.28)% at 8 h and then increased significantly (P<0.05); reducing sugar increased gradually and reached the highest at 8 h and then decreased significantly (P<0.05); the changes of fat were not significant (P>0.05) after 2 h; total protein content reached the highest (8.54±0.17)% in 6 h, which first decreased then increased and decreased; soluble protein and phenols decreased significantly(P<0.05); the change of dietary fiber and ash were not significant (P>0.05) during the digestion. Glutamic acid accounted for the highest proportion followed by asparaginic acid, lysine and leucine, while the changes of free amino acids were not regular in different stages. The chlorogenic acid and citric acid increased gradually, while the malic acid content decreased and the caffeine content remained almost unchanged. Chlorogenic acid were significantly correlated with the flavor of coffee, the citric acid and malic acid contributed to the acidity of coffee, the soluble protein content influenced on the aftertaste of coffee. Polysaccharide, ash, gynesine and quininic acid played inactive roles in the body of coffee cupping. The research provides theoretical basis of processing innovation of fermentation of coffee by probiotics.
Key words:  coffee    in vitro digestion    fermentation    physical and chemical properties
收稿日期:  2019-08-15      修回日期:  2020-08-31           出版日期:  2021-02-25      发布日期:  2021-03-16      期的出版日期:  2021-02-25
基金资助: 云南省科技厅科技计划基础研究面上项目(2019FB055);云南农业大学自然科学青年科研基金(2016ZR04);云南省高校食品加工与安全控制重点实验室开放基金项目(YJK〔2014〕16 KF06);云南省建立农科教相结合新型农业社会化服务体系试点项目(2014NG004-08);云南特色咖啡加工关键技术研究与产品开发(KX141733)
作者简介:  硕士研究生(谭超讲师为通讯作者,E-mail:tctj_1212@163.com)
引用本文:    
弘子姗,谭超,杨宁. 体外模拟发酵对咖啡理化性质及品质的影响[J]. 食品与发酵工业, 2021, 47(4): 54-59.
HONG Zishan,TAN Chao,YANG Ning. Effects of in vitro digestion on the physicochemical property and quality of Arabica coffee[J]. Food and Fermentation Industries, 2021, 47(4): 54-59.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.022000  或          http://sf1970.cnif.cn/CN/Y2021/V47/I4/54
[1] 郑作新.脊椎动物分类学[M].北京:中国农业出版社, 1982.
ZHENG Z X.Vertebrate Taxonomy[M].Beijing:China Agricultural Press, 1982.
[2] 罗蓉,谢家华,辜永河.贵州兽类志[M].贵阳:贵州科技出版社, 1993.
LUO R, XIE J H, GU Y H.Guizhou Animal Chronicles[M].Guiyang:Guizhou Science and Technology Press, 1993.
[3] TAWALI A B, LAGA A.Luwak coffee in vitro fermentation:Literature review[C].IOP Conference Series:Earth and Environmental Science.IOP Publishing, 2019.
[4] 钟福生.小灵猫的资源、开发利用现状与分布[J].湖南环境生物职业技术学院学报, 2001, 7(2):24-26.
ZHONG F S.Status & distribution of exploitation and utilization in Lesser Civits’ resource[J].Journal of Hunan Environment-Biological Polytechnic, 2001, 7(2):24-26.
[5] 黎跃成,万德光.中国药用动物原色图鉴[M].上海:上海科学技术出版社,2010.
LI Y C, WAN D G.Primary Color Atlas of Chinese Medicinal Animals[M].Shanghai:Shanghai Scientific & Technical Publishers, 2010.
[6] MARCONE M F.Composition and properties of Indonesian palm civet coffee (Kopi Luwak) and Ethiopian civet coffee[J]. Food Research International, 2004, 37(9):901-912.
[7] MARTINEZ L F, BALABAN M O.Quality Enhancement of Coffee Beans by Acid and Enzyme Treatment:U.S.Patent Application 12/392,757[P].2009-09-03.
[8] 佟世生,王丽,靳静言,等.酶解咖啡鲜果对烘焙咖啡饮用品质和化学成分的影响研究[J].食品研究与开发, 2016, 37(10):49-54;90.
TONG S S, WANG L, JIN J Y, et al.Conditions optimization of enzymolysis on coffee fruit and the impact study on coffee drinking quality and chemical composition[J].Food Research and Development, 2016, 37(10):49-54;90.
[9] 佟世生,王丽,靳静言,等.酶解偶联发酵体外模拟麝香猫咖啡的电子舌相关性分析[J].食品工业科技, 2015, 36(22):133-136;142.
TONG S S, WANG L, JIN J Y, et al.Correlation analysis of simulation civet coffee by purebred fermentated coupling with pepsin enzymatic pre-hydrolysis in vitro with electronic tongue[J].Science and Technology of Food Industry, 2015, 36(22):133-136;142.
[10] GILBERTO V D M P, DA-O P D C N, MEDEIROS A B P, et al.Potential of lactic acid bacteria to improve the fermentation and quality of coffee during on-farm processing[J].International Journal of Food Science & Technology, 2016, 51(7):1 689-1 695.
[11] BRESSANI A P P, MARTINEZ S J, EVANGELISTA S R, et al.Characteristics of fermented coffee inoculated with yeast starter cultures using different inoculation methods[J].LWT, 2018, 92:212-219.
[12] 国家药典委员会.中华人民共和国药典[M].北京:中国医药科技出版社,2015.
National Pharmacopoeia Committee.Chinese Pharmacopoeia[M].Beijing:China Medical Science and Technology Press, 2015.
[13] LINGLE T R, MENON S N.Cupping and Grading-Discovering Character and Quality[M].The Craft and Science of Coffee,2017.
[14] 中华人民共和国国家卫生和计划生育委员会.GB 5009.4—2016食品安全国家标准 食品中灰分的测定[S].北京:中国标准出版社, 2016.
National Health and Family Planning Commission of the PRC.GB 5009.4—2016 National Standard for Food safety Determination of ash content in food[S].Beijing:China Standards Press, 2016.
[15] 中华人民共和国国家卫生和计划生育委员会.GB 5009.88—2014食品安全国家标准 食品中膳食纤维的测定[S].北京:中国标准出版社, 2014.
National Health and Family Planning Commission of the PRC.GB 5009.88—2014 National Standard for Food safety Determination of dietary fiber[S].Beijing:China Standards Press, 2014.
[16] 中华人民共和国国家卫生和计划生育委员会.GB 5009.7—2016食品安全国家标准 食品中还原糖的测定[S].北京:中国标准出版社, 2016.
National Health and Family Planning Commission of the PRC.GB 5009.7—2016 National Standard for Food safety Determination of reducing sugar[S].Beijing:China Standards Press, 2016.
[17] 中华人民共和国国家卫生和计划生育委员会.GB 5009.6—2016食品安全国家标准 食品中脂肪的测定[S].北京:中国标准出版社, 2016.
National Health and Family Planning Commission of the PRC.GB 5009.6—2016 National Standard for Food safety Determination of fat[S].Beijing:China Standards Press, 2016.
[18] 中华人民共和国国家卫生和计划生育委员会.GB 5009.5—2016食品安全国家标准 食品中蛋白质的测定[S].北京:中国标准出版社, 2016.
National Health and Family Planning Commission of the PRC.GB 5009.5—2016 National Standard for Food safety Determination of Protein[S].Beijing:China Standards Press, 2016.
[19] BALLESTEROS L F, JOSÉ A TEIXEIRA, MUSSATTO S I.Extraction of polysaccharides by autohydrolysis of spent coffee grounds and evaluation of their antioxidant activity[J].Carbohydrate Polymers, 2017, 157:258-266.
[20] 张帅,程昊,邱彩霞,等.超声波诱变对猴头菇粗多糖的影响[J].食品与发酵工业, 2020, 46(2):126-130.
ZHANG S, CHENG H, QIU C X, et al.Effect of ultrasonic mutation on crude polysaccharide of Hericium erinaceus[J].Food And Fermentation Industries, 2020, 46(2):126-130.
[21] 张颖,张光艳,王宇翔,等.不同花源蜂蜜蛋白质组分及提取方法的比较[J].食品与发酵工业, 2019, 45(14):91-96.
ZHANG Y, ZHANG G Y, WANG Y X, et al.Comparison of protein composition and extraction methods between honey from different floral origins[J].Food and Fermentation Industries, 2019, 45(14):91-96.
[22] KWAK H S, JI S, JEONG Y.The effect of air flow in coffee roasting for antioxidant activity and total polyphenol content[J].Food Control, 2017, 71:210-216.
[23] 吴振,李红,王勇德,等.不同热处理温度对蓝莓果汁在冷藏过程中多酚和黄酮含量的影响[J].食品与发酵工业, 2019, 45(17):209-215.
WU Z, LI H, WANG Y D, et al.Effects of different thermal-treated temperatures on polyphenols and flavonoids of blueberry juice during cold storage[J].Food and Fermentation Industries, 2019, 45(17):209-215.
[24] 胡婕伦. 大粒车前子多糖体内外消化与酵解特征体系构建及其促进肠道健康的作用[D].南昌:南昌大学, 2014.
HU J L.Establishment of a system for in vitro and in vivo studies on digestion and fermentation of polysaccharide from seeds of Plantago asiatica L.with its beneficial effects on intestinal health[D].Nanchang:Nanchang University, 2014.
[25] FISHMAN M L, COOKE P, HOTCHKISS A, et al.Progressive dissociation of pectin[J].Carbohydrate Research, 1993, 248(3):303-316.
[26] CHEN J, LIANG R H, LIU W, et al.Degradation of high-methoxyl pectin by dynamic high pressure microfluidization and its mechanism[J].Food Hydrocolloids, 2012, 28(1):121-129.
[27] 邹晓莉,江水,郑波,等.高效阴离子色谱法分离测定蜂蜜和保健食品多糖水解产物中的单糖组成[J].四川大学学报(医学版), 2008(5):836-838.
ZOU X L, JIANG S, ZHENG B, et al.Determination of monosaccharides in honey and polysaccharide hydrolyzate of functional food by high performance anion exchange chromatography[J].Journal of Sichuan University (Med Sci Edi), 2008(5):836-838.
[28] 张冠亚,黄晓君,聂少平,等.体外模拟3种消化液对铁皮石斛多糖的消化作用[J].食品科学, 2014, 35(23):279-283.
ZHANG G Y, HUANG X J, NIE S P, et al.Effects of three digestive juices on the in vitro digestion of Dendrobium offcinale polysaccharide[J].Food Science, 2014, 35(23):279-283.
[29] 李俶,王谢祎,翟宇鑫,等.多酚化合物体外模拟消化的稳定性分析[J].食品科学, 2016, 37(13):1-5.
LI T, WANG X Y, ZHAI Y X, et al.Stability of polyphenols during in vitro digestion[J].Food Science, 2016, 37(13):1-5.
[30] FULGENCIO S C, JOSÉ S, ISABEL G.Intake and bioaccessibility of total polyphenols in a whole diet[J].Food Chemistry, 2006, 101(2):492-501.
[31] 徐俊杰. 甘油三酯的体外模拟消化水解研究[D].无锡:江南大学, 2014.
XU J J.Study on triglyceride hydrolysis during in vitro digestion[D].Wuxi:Jiangnan University, 2014.
[32] LEE L W, TAY G Y,CHEONG M W, et al.Modulation of the volatile and non-volatile profiles of coffee fermented with Yarrowia lipolytica:I.Green coffee[J].LWT Food Science and Technology, 2017, 77:225-232.
[33] 于淼. 云南德宏地区咖啡豆的风味品质特性研究[D].大庆:黑龙江八一农垦大学, 2017.
YU M.Study on flavor quality of coffee beans in Dehong area of Yunnan[D].Daqing:Heilongjiang BayiAgricultural University, 2017.
[34] 虞健. 不同烘焙程度咖啡感官特征及主要化学成分分析[D].无锡:江南大学, 2014.
YU J.Sensory evaluation of coffee in different roasting degrees and analysis of the main effecting chemicals[D].Wuxi:Jiangnan University, 2014.
[35] FUJIOKA K,SHIBAMOTO T.Chlorogenic acid and caffeine contents in various commercial brewed coffees[J].Food Chemistry, 2008, 106(1):217-221.
[36] PANJI T, PRIYONO, SUHARYANTO, et al.“CIRAGI”- The microbial fermentation starter for developing excellent coffee flavour[C].IOP Conference Series:Earth and Environmental Science, 2018,99(1):409-420.
[37] WANG C H, SUN J C, LASSABLIERE B, et al.Potential of lactic acid bacteria to modulate coffee volatiles and effect of glucose supplementation:Fermentation of green coffee beans and impact of coffee roasting[J].Journal of the Science of Food and Agriculture, 2018,99(1):409-420.
[38] 胡双芳,卫亚西,邢精精,等.咖啡豆的化学组分差异与感官品质的相关性分析[J].食品工业科技, 2013, 34(24):125-129.
HU S F, WEI Y X, XING J J, et al.Correlation analysis between chemical components and sensory quality of coffee[J].Science and Technology of Food Industry, 2013, 34(24):125-129.
[1] 夏天航, 魏子淏, 马磊, 奚晓鸿, 宋琳, 徐雅男, 薛长湖. 负载虾青素的油凝胶纳米乳液的构建及体外消化研究[J]. 食品与发酵工业, 2021, 47(9): 1-7.
[2] 赵雨, 郭建华, 张春枝. 蜡状芽孢杆菌ZY12产磷脂酶D的影响因素[J]. 食品与发酵工业, 2021, 47(9): 57-62.
[3] 王迪, 王智荣, 陈湑慧, 宋军, 孔祥兵, 陈本开, 阚建全. 不同后发酵温度下曲霉型豆豉的氨基酸态氮生成动力学及品质变化研究[J]. 食品与发酵工业, 2021, 47(9): 91-99.
[4] 刘梦, 缪礼鸿, 刘蒲临, 王霜, 高瑞杰. 马克斯克鲁维酵母与酿酒酵母混合发酵对液态法黄酒风味的影响[J]. 食品与发酵工业, 2021, 47(9): 160-167.
[5] 王伟佳, 刘爱国, 廖振宇, 刘立增, 孙丽婷, 杨红, 刘蕊, 刘长旭, 李雨轩. 发酵乳中内源性苯甲酸产生的影响因素[J]. 食品与发酵工业, 2021, 47(9): 168-173.
[6] 黄力, 刘功良, 费永涛, 高苏娟, 白卫东, 刘锐. 微生物航天育种及其在发酵食品微生物中的应用研究概述[J]. 食品与发酵工业, 2021, 47(9): 321-327.
[7] 鲁朝凤, 黄佳琦, 黄勇桦, 杨士花, 陈壁, 杨明静, 李永强. 青稞膳食纤维和多酚对肠道微生物的协同调节作用[J]. 食品与发酵工业, 2021, 47(8): 6-13.
[8] 赵帅东, 刘婷, 季旭, 杨梓璐, 尹轩威, 施文正, 汪立平, 宁喜斌. 利用外源蛋白酶和曲霉菌YL001加速沙丁鱼鱼露的发酵[J]. 食品与发酵工业, 2021, 47(8): 14-20.
[9] 唐富豪, 滕建文, 韦保耀, 黄丽, 夏宁, 覃超. 基于非靶向代谢组学评价传统发酵对客家酸芥菜酚类化合物组成的影响[J]. 食品与发酵工业, 2021, 47(8): 128-133.
[10] 李丽, 杨云丽, 杨小凡, 何伟, 袁恺, 朱威宇, 彭超, 何一凡, 董银卯, 周卫强. 液体发酵生产灵芝三萜酸的过程调控研究进展[J]. 食品与发酵工业, 2021, 47(8): 304-312.
[11] 刘景阳, 刘云鹏, 徐庆阳. 谷氨酸全营养流加发酵新工艺[J]. 食品与发酵工业, 2021, 47(7): 14-20.
[12] 高宇豪, 吴勇杰, 朱亚鑫, 付静, 徐建国, 王松涛, 徐国强, 张晓梅, 史劲松, 许正宏. 产谷胱甘肽毕赤酵母工程菌的构建及能量调控[J]. 食品与发酵工业, 2021, 47(7): 21-26.
[13] 邓祥宜, 李继伟, 何立超, 张原源, 黄国威, 鲍晓龙, 邱朝坤. 宣恩火腿发酵过程中表面微生物群落演替规律[J]. 食品与发酵工业, 2021, 47(7): 34-42.
[14] 韩宛芸, 张长懿, 顾泽鹏, 段小雨, 孙庆杰, 邱立忠, 卞希良, 邬应龙, 刘韫滔. 高产β-葡聚糖的黄伞菌株分离、鉴定及其体外模拟消化[J]. 食品与发酵工业, 2021, 47(7): 51-57.
[15] 李海枝, 王俊, 熊菲菲, 刘义凤, 王玺, 马芙俊, 段盛林, 周志桥, 潘聪, 于有强, 夏凯, 梁爱民. 不同钙制剂体外消化的稳定性比较及消化后的结构研究[J]. 食品与发酵工业, 2021, 47(7): 116-122.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn