Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (2): 246-251    DOI: 10.13995/j.cnki.11-1802/ts.022029
  分析与检测 本期目录 | 过刊浏览 | 高级检索 |
基于视频与数字图像比色的甘薯多酚氧化酶活力检测
陈嘉1, 高丽1, 叶发银1, 刘嘉2, 赵国华1,3,4*
1 (西南大学 食品科学学院,重庆,400715)
2 (贵州省农业科学院食品加工研究所,贵州 贵阳,550006)
3 (重庆市甘薯工程技术研究中心,重庆,400715)
4 (重庆市农产品加工技术重点实验室,重庆,400715)
Rapid determination of polyphenol oxidase activity in sweet potato based on video and digital image colorimetry
CHEN Jia1, GAO Li1, YE Fayin1, LIU Jia2, ZHAO Guohua1,3,4*
1 (College of Food Science, Southwest University, Chongqing 400715, China)
2 (Institute of Food Processing, Guizhou Academy of Agricultural Science, Guiyang 550006, China)
3 (Chongqing Sweet Potato Engineering and Technology Centre, Chongqing 400715, China)
4 (Chongqing Key Laboratory of Agricultural Product Processing, Chongqing 400715, China)
下载:  HTML   PDF (3176KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 多酚氧化酶(polyphenol oxidase,PPO)是引起甘薯酶促褐变的主要原因,常用的PPO活力检测方法操作繁琐,建立一种简便快捷的检测方法意义重大。实验采用手机拍摄甘薯切片的褐变视频,提取视频图像RGB变化数据,建立了PPO活力预测模型。研究发现,0~30 s图像R值的变化量(ΔR)与PPO活力呈极强的正相关(相关系数0.946),G值与B值的变化量(ΔG和ΔB)与PPO活力呈中等强度正相关(相关系数分别为0.799和0.620)。采用多元线性回归模型对ΔR、ΔG、ΔB与PPO活力间的关系进行拟合,所得模型的拟合确定系数(R2)达到0.903,模型的预测相关系数(rp)、预测均方误差和标准偏差比分别为0.956,2.079和3.459。结果表明,采用视频与数字图像比色快速检测甘薯多酚氧化酶活力是可行的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈嘉
高丽
叶发银
刘嘉
赵国华
关键词:  甘薯  多酚氧化酶活力  视频  数字图像比色  快速检测    
Abstract: Polyphenol oxidase (PPO) is the main cause of enzymatic browning of sweet potato. The commonly used method for detecting PPO activity is complicated, so it is of great significance to establish a simple and fast method for the detection of PPO activity. In the present study, the browning process of sweet potato slices were videotaped by a cell phone, and the changes of RGB values in these videos were extracted. The PPO activity prediction model was also be established. The results showed that the change of R value (ΔR) from 0 to 30 s was highly positive correlated with PPO activity (correlation coefficient was 0.946), and the change of G and B value (ΔG and ΔB) was moderately positive correlated with PPO activity (correlation coefficient was 0.799 and 0.620, respectively). Multivariate linear regression model was used to fit the relationship between ΔR, ΔG, ΔB and PPO activity. The coefficient of determination (R2) of the model reached 0.903, the predicted correlation coefficients (rp), root mean square error of prediction (RMSEP) and standard deviation ratio (SDR) of the model were 0.956, 2.079 and 3.459, respectively. The results indicated that the methodology developed here is feasible to predict PPO activity of sweet potato by video and digital image colorimetry.
Key words:  sweet potato    polyphenol oxidase (PPO) activity    video    digital image colorimetry    rapid determination
收稿日期:  2019-08-19                出版日期:  2020-01-25      发布日期:  2020-03-13      期的出版日期:  2020-01-25
基金资助: 黔科合支撑[2019]2326号;中央高校基本业务费专项资金资助(XDJK2018C014);重庆市社会事业与民生保障科技创新专项项目(cstc2015shms-ztzx80006)
作者简介:  博士,讲师(赵国华教授为通讯作者,E-mail:zhaoguohua1971@163.com)。
引用本文:    
陈嘉,高丽,叶发银,等. 基于视频与数字图像比色的甘薯多酚氧化酶活力检测[J]. 食品与发酵工业, 2020, 46(2): 246-251.
CHEN Jia,GAO Li,YE Fayin,et al. Rapid determination of polyphenol oxidase activity in sweet potato based on video and digital image colorimetry[J]. Food and Fermentation Industries, 2020, 46(2): 246-251.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.022029  或          http://sf1970.cnif.cn/CN/Y2020/V46/I2/246
[1] 刘水英, 李新生, 江海, 等. 彩色甘薯不同品种中基本物质及功能成分分析[J]. 江苏农业科学, 2015,43(1):303-305.
[2] 周郑坤, 郑元林. 甘薯营养价值与保健功能的再认识[J]. 江苏师范大学学报(自然科学版), 2016,34(4):16-19;87.
[3] 郁志芳, 夏志华, 陆兆新. 鲜切甘薯酶促褐变机理的研究[J]. 食品科学, 2005,26(5):54-59.
[4] PIZZOCARO F, TORREGGIANI D, GILARDI G. Inhibition of apple polyphenol oxidase (PPO) by ascorbic, citric acid and sodium chloride[J]. Journal of Food Processing and Preservation, 1993,17(1):21-30.
[5] 刘锐, 杨瑞琴, 常冠群. 图像比色法测定有色溶液[J]. 理化检验-化学分册, 2014,50(11):1 348-1 350.
[6] JIA M, WU Q, LI H, et al. The calibration of cellphone camera-based colorimetric sensor array and its application in the determination of glucose in urine[J]. Biosensors & Bioelectronics, 2015,74:1 029-1 037.
[7] KOSTELNIK A, CEGAN A, POHANKA M. Color change of phenol red by integrated smart phone camera as a tool for the determination of neurotoxic compounds[J]. Sensors, 2016,16(9):1-10.
[8] ONCESCU V, MANCUSO M, ERICKSON D. Cholesterol testing on a smartphone[J]. Lab on A Chip, 2014,14(4):759-763.
[9] WONGNIRAMAIKUL W, LIMSAKUL W, CHOODUM A. A biodegradable colorimetric film for rapid low- cost field determination of formaldehyde contamination by digital image colorimetry[J]. Food Chemistry, 2018,249:154-161.
[10] CHOODUM A, SRIPROM W, WONGNIRAMAIKUL W. Portable and selective colorimetric film and digital image colorimetry for detection of iron[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2019,208:40-47.
[11] SUMRIDDETCHKAJORN S, CHAITAVON K, INTARAVANNE Y. Mobile device-based self-referencing colorimeter for monitoring chlorine concentration in water[J]. Sensors and Actuators B: Chemical, 2013,182:592-597.
[12] LOPEZ-RUIZ N, CURTO V F, ERENAS M M, et al. Smartphone-Based simultaneous pH and nitrite colorimetric determination for paper microfluidic devices[J]. Analytical Chemistry, 2014,86(19):9 554-9 562.
[13] SEKINE Y, KATORI R, TSUDA Y, et al. Colorimetric monitoring of formaldehyde in indoor environment using built-in camera on mobile phone[J]. Environmental Technology, 2016,37(13):1 647-1 655.
[14] WEI Q, NAGI R, SADEGHI K, et al. Detection and spatial mapping of mercury contamination in water samples using a smart-phone[J]. Acs Nano, 2014,8(2):1 121-1 129.
[15] GUO J, WONG J X H, CUI C, et al. A smartphone-readable barcode assay for the detection and quantitation of pesticide residues[J]. Analyst, 2015,140(16):5 518-5 525.
[16] SANTOS NETO J H, PORTO I S A, SCHNEIDER M P, et al. Speciation analysis based on digital image colorimetry: Iron (Ⅱ/Ⅲ) in white wine[J]. Talanta, 2019,194:86-89.
[17] MASAWAT P, HARFIELD A, NAMWONG A. An iPhone-based digital image colorimeter for detecting tetracycline in milk[J]. Food Chemistry, 2015,184:23-29.
[18] MAHATO K, CHANDRA P. Paper-based miniaturized immunosensor for naked eye ALP detection based on digital image colorimetry integrated with smartphone[J]. Biosensors and Bioelectronics, 2019,128:9-16.
[19] SINGKHONRAT J, SRIPRAI A, HIRUNWATTHANAKASEM S, et al. Digital image colorimetric analysis for evaluating lipid oxidation in oils and its emulsion[J]. Food Chemistry, 2019,286:703-709.
[20] DE SOUSA FERNANDES D D, ROMEO F, KREPPER G, et al. Quantification and identification of adulteration in the fat content of chicken hamburgers using digital images and chemometric tools[J]. LWT-Food Science and Technology, 2019,100:20-27.
[21] THONGPRAJUKAEW K, CHOODUM A, SA-E B, et al. Smart phone: A popular device supports amylase activity assay in fisheries research[J]. Food Chemistry, 2014,163:87-91.
[22] AZEEM S M A, MADBOULY M D, EL-SHAHAT M F. Determination of nitrite in processed meat using digital image method and powdered reagent[J]. Journal of Food Composition and Analysis, 2019,81:28-36.
[23] WONGNIRAMAIKUL W, LIMSAKUL W, CHOODUM A. A biodegradable colorimetric film for rapid low-cost field determination of formaldehyde contamination by digital image colorimetry[J]. Food Chemistry, 2018,249:154-161.
[24] LEE K, BAEK S, KIM D, et al. A freshness indicator for monitoring chicken-breast spoilage using a Tyvek® sheet and RGB color analysis[J]. Food Packaging and Shelf Life, 2019,19:40-46.
[25] 沈升法, 吴列洪, 李兵. 基于图像RGB特征值的甘薯色素与肉色关系初步探讨[J]. 植物遗传资源学报, 2015,16(4):888-894.
[26] 王礼群, 刘硕, 杨春贤, 等. 鲜切甘薯不同部位褐变机理差异[J]. 食品科学, 2018,39(1):285-290.
[27] CHEN J, ZHU S, ZHAO G. Rapid determination of total protein and wet gluten in commercial wheat flour using siSVR-NIR[J]. Food Chemistry, 2017,221:1 939-1 946.
[28] CHOODUM A, KANATHARANA P, WONGNIRAMAIKUL W, et al. A sol–gel colorimetric sensor for methamphetamine detection[J]. Sensors and Actuators B: Chemical, 2015,215:553-560.
[1] 许建东, 张淑娟, 郑小南, 薛建新, 孙海霞. 高光谱技术结合变量选择方法的甘薯冻害检测研究[J]. 食品与发酵工业, 2021, 47(8): 197-203.
[2] 王嫦嫦, 郑思洁, 战艺芳, 夏定, 白向茹, 王利华, 姚琪, 李婷婷. 结合纳米材料的适配体传感器在重金属检测中的应用研究进展[J]. 食品与发酵工业, 2021, 47(8): 283-289.
[3] 徐文文, 梁玉林, 王云霞, 刘秀, 尹建军, 周广军, 宋全厚, 丁梦璇, 周鹏飞. 二重环介导等温扩增法快速检测乳粉中沙门氏菌和金黄色葡萄球菌[J]. 食品与发酵工业, 2021, 47(2): 241-246.
[4] 姜海瀛, 张志杰, 王艳双, 张莉, 高丽君, 李明成, 孙丽媛, 张丽华. 牛肉PCR-核酸试纸条快速鉴定方法的建立及试剂盒的研制[J]. 食品与发酵工业, 2021, 47(18): 275-281.
[5] 吴天赐, 李楠, 张娟, 余意, 刘振民. 原料乳中产蛋白酶假单胞菌双重PCR检测体系建立和评价[J]. 食品与发酵工业, 2021, 47(14): 251-256.
[6] 赵祥颖, 刘丽萍, 张家祥, 赵立强, 韩墨, 姚明静. 基于气相色谱-离子迁移谱联用技术分析甘薯块根不同组分对甘薯特征风味剂香气的贡献[J]. 食品与发酵工业, 2021, 47(12): 236-243.
[7] 华彦涛, 刘波, 赵炫, 尹凯丹, 马楠楠, 袁利鹏. 微孔侧流免疫层析法检测农产品中2, 4-二氯苯氧乙酸残留[J]. 食品与发酵工业, 2021, 47(12): 244-249.
[8] 范会平, 高凯, 艾志录, 司艺蕾, 侯冰洁, 张波波. 不同添加剂对双螺杆挤压紫甘薯米粉品质改良效果及其消化特性研究[J]. 食品与发酵工业, 2021, 47(11): 132-138.
[9] 易昌毓, 罗自生, 潘响亮, 林星宇. 基于数字化环介导等温扩增技术的牛乳中大肠杆菌快速精准定量分析[J]. 食品与发酵工业, 2021, 47(11): 241-246.
[10] 吴任之, 胡欣洁, 韩国全, 易艳, 舒佳新, 曹阳, 余东梅, 赵俊梅, 张翼, 张雨薇. 食源性金黄色葡萄球菌快速检测方法的研究进展[J]. 食品与发酵工业, 2021, 47(10): 291-296.
[11] 段志蓉, 靳苗苗, 吴姗鸿, 代慧, 张敏. 外源乙烯的处理时机对甘薯抑芽及碳水化合物代谢的影响[J]. 食品与发酵工业, 2021, 47(1): 206-213.
[12] 何欣遥, 靳苗苗, 刘锦, 程圣, 张敏. 外源乙烯对常温物流甘薯的抑芽作用及其品质的影响[J]. 食品与发酵工业, 2020, 46(7): 194-200.
[13] 万晓楠, 畅晓晖, 齐玮, 高欣, 乔彬, 杨向莹, 李小林, 张惠媛, 石嵩, 张捷, 周熙成. 基于近红外免疫层析技术快速检测食源性甲型肝炎病毒[J]. 食品与发酵工业, 2020, 46(7): 213-217.
[14] 杨晓月, 郜海燕, 钟迪颖, 张润光, 张有林. 秦薯5号甘薯营养成分测定及贮前低温处理对贮藏品质的影响[J]. 食品与发酵工业, 2020, 46(7): 201-206.
[15] 周新丽, 申炳阳, 高丽娟, 孔兵, 叶嘉明. 用于五种动物源性成分快速检测的离心式微流控芯片系统研制[J]. 食品与发酵工业, 2020, 46(3): 229-234.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn