Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (2): 11-17    DOI: 10.13995/j.cnki.11-1802/ts.022339
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
增强回补途径对谷氨酸棒状杆菌合成L-异亮氨酸的影响
朱福周1, 芦楠1, 李宇虹1, 林蓓蓓1, 郑颖楠1, 王子申1, 陈宁1, 张成林1,2*
1 (天津科技大学 生物工程学院,天津,300457)
2 (菱花集团有限公司,山东 济宁,272073)
Comparing the effects of enhancing anaplerotic pathways on L-isoleucine production performance by Corynebacterium glutamicum YI
ZHU Fuzhou1, LU Nan1, LI Yuhong1, LIN Beibei1, ZHENG Yingnan1, WANG Zishen1, CHEN Ning1, ZHANG Chenglin1,2*
1 (College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China)
2 (Linghua Group Ltd, Jining 272073, China)
下载:  HTML   PDF (981KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 该实验考察和比较增强回补途径对谷氨酸棒状杆菌合成L-异亮氨酸的影响。通过以L-异亮氨酸生产菌Corynebacterium glutamicum YI为出发菌株,分别采用基因组整合和质粒的方式过表达磷酸烯醇式丙酮酸羧化酶编码基因ppc及丙酮酸羧化酶编码基因pyc。结果表明,获得pyc基因组整合和质粒过表达菌株ILE01和ILE02,摇瓶条件下菌株L-异亮氨酸产量分别提高17.3%(6.1 g/L)和9.6% (5.7 g/L)、发酵罐条件下分别提高11.7% (24.8 g/L)和8.1%(24.0 g/L)。获得ppc基因组整合和质粒过表达菌株ILE03和 ILE04,摇瓶条件下菌株L-异亮氨酸产量分别提高30.8% (6.8 g/L)和13.5%(5.9 g/L)、发酵罐条件下分别提高15.8% (25.7 g/L)和9.5% (24.3 g/L)。此外,过表达pyc和ppc还可不同程度地提高L-异亮氨酸转化率。然而采用质粒过表达pyc和ppc均使得菌株生物量下降。因此,过表达pyc和ppc均能显著提高L-异亮氨酸产量和转化率,基因组整合的过表达方式效果优于质粒过表达。该研究首次比较并报道了增强谷氨酸棒杆菌回补途径对谷氨酸棒杆菌生产L-异亮氨酸的影响,可为其代谢工程改造提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱福周
芦楠
李宇虹
林蓓蓓
郑颖楠
王子申
陈宁
张成林
关键词:  谷氨酸棒状杆菌  L-异亮氨酸  回补途径  代谢工程    
Abstract: To clarify and compare the effects of enhancing the anaplerotic pathways on L-isoleucine production performance by Corynebacterium glutamicum. The genes of pyc and ppc were overexpressed by replacing the native promoter with Ptuf or by inserting the genes to plasmid in a L-isoleucine producer, C. glutamicum YI.The pyc overexpressed via genome-integration in ILE01 and via plasmid in ILE02 resulted in 17.3% (6.1 g/L) and 9.6% (5.7 g/L) increase in production of L-isoleucine by batch fermentation; as well as 11.7% (24.8 g/L) and 8.1% (24.0 g/L) by fed-batch fermentation. By comparison, the ppc overexpressed via the two strategies lead to 30.8% (6.8 g/L) and 13.5% (5.9 g/L), 15.8% (25.7 g/L) and 9.5% (24.3 g/L) increase by the two fermentation processes. Meanwhile, overexpression of pyc and ppc resulted in improvement of L-isoleucine yield. However, overexpression of pyc and ppc in ILE02 and ILE04 resulted in cell growth decreased. Overexpression of pyc and ppc both resulted in remarkably promotion of L-isoleucine production performance and the genome-integration overexpressing strategy was more profitable. This study first reports the effects of enhancing anaplerotic pathways on L-isoleucine production by C. glutamicum. The results would supply the reference for metabolic engineering of C. glutamicum.
Key words:  Corynebacterium glutamicum    L-isoleucine    anaplerotic pathways    metabolic engineering
收稿日期:  2019-07-28                出版日期:  2020-01-25      发布日期:  2020-03-13      期的出版日期:  2020-01-25
基金资助: 国家自然科学基金项目(31300069;31770053);中国博士后科学基金项目(2017M611170;2018T110662);天津市科技计划项目(17YFZCSY01050);天津科技大学青年教师创新基金项目(2016LG07)
作者简介:  硕士研究生(张成林副教授为通讯作者,E-mail:zcl@tust.edu.cn)。
引用本文:    
朱福周,芦楠,李宇虹,等. 增强回补途径对谷氨酸棒状杆菌合成L-异亮氨酸的影响[J]. 食品与发酵工业, 2020, 46(2): 11-17.
ZHU Fuzhou,LU Nan,LI Yuhong,et al. Comparing the effects of enhancing anaplerotic pathways on L-isoleucine production performance by Corynebacterium glutamicum YI[J]. Food and Fermentation Industries, 2020, 46(2): 11-17.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.022339  或          http://sf1970.cnif.cn/CN/Y2020/V46/I2/11
[1] PARK J H, OH J E, LEE K H, et al. Rational design of Escherichia coli for L-Isoleucine Production[J]. ACS Synthetic Biology, 2012, 1(11): 532-540.
[2] LI Y, WEI H, WANG T, et al. Current status on metabolic engineering for the production of L-aspartate family amino acids and derivatives[J]. Bioresource Technology, 2017, 245: 1 588-1 602.
[3] LEUCHTENBERGER W, HUTHMACHER K, DRAUZ K. Biotechnological production of amino acids and derivatives: Current status and prospects[J]. Applied Microbiology and Biotechnology, 2015, 69(1): 1-8.
[4] CHEN Z, BOMMAREDDY R R, FRANK D, et al. Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum [J]. Applied and Environmental Microbiology, 2014, 80(4): 1 388-1 393.
[5] GERSTMEIR R, WENDISCH VF, SCHNICKE S, et al. Acetate metabolism and its regulation in Corynebacterium glutamicum[J]. Journal of Biotechnology, 2003, 104(1-3): 99-122.
[6] SAUER U, EIKMANNS B J. The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria[J]. FEMS Microbiology Reviews, 2005, 29(4): 765-794.
[7] DELAUNAY S, UY D, BAUCHER M F, et al. Importance of phosphoenolpyruvate carboxylase of Corynebacterium glutamicum during the temperature triggered glutamic acid fermentation[J]. Metabolic Engineering, 1999, 1(4): 334-343.
[8] SATO H, ORISHIMO K, SHIRAI T, et al. Distinct roles of two anaplerotic pathways in glutamate production induced by biotin limitation in Corynebacterium glutamicum[J]. Journal of Bioscience and Bioengineering, 2008, 106(1): 51-58.
[9] GUO Xuan, WANG Jing, XIE Xixian, et al. Enhancing the supply of oxaloacetate for L-glutamate production by pyc overexpression in different Corynebacterium glutamicum[J]. Biotechnology Letters, 2013, 35(6): 943-950.
[10] PETERS-WENDISCH P G, WENGISCH V F,DE GRAAF A A, et al. C3-carboxylation as an anaplerotic reaction in phosphoenolpyruvate carboxylase-deficient Corynebacterium glutamicum[J]. Archives of Microbiology, 1996, 165(6): 387-396.
[11] GUBLER M, PARK S M, MIKE J, et al. Effects of phosphoenolpyruvate carboxylase deficiency on metabolism and lysine production in Corynebacterium glutamicum[J]. Applied Microbiology and Biotechnology, 1994, 40(6): 857-863.
[12] SAMBROOK J, MACCALLUM P, RUSSELL D. Molecular Cloning: A Laboratory Manual[M]. New York: Cold Spring Harbor Laboratory Press, 2001.
[13] EGGELING L, BOTT M. Handbook of Corynebacterium glutamicum[M]. Boca Raton: CRC Press, 2005: 520-521.
[14] BECKER J, ZELDER O, H & #xC3;FNER S, et al. From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production[J]. Metabolic Engineering, 2011, 13(2): 159-168.
[15] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using realtime quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25 (4): 402-408.
[16] SAWADA K, ZEN-IN S, WADA M, et al. Metabolic changes in a pyruvate kinase gene deletion mutant of Corynebacterium glutamicum ATCC 13032[J]. Metabolic Engineering, 2010,12 (4): 401-407.
[17] DE FORCHETTI S R M, CAZZULO J J. Some properties of the pyruvate carboxylase from Pseudomonas fluorescens[J]. Microbiology, 1976, 93 (1): 75-81.
[18] YOKOTA A, SAWADA K, WADA M. Boosting anaplerotic reactions by pyruvate kinase gene deletion and phosphoenolpyruvate carboxylase desensitization for glutamic acid and lysine production in Corynebacterium glutamicum[J]. Advances in Biochemical Engineering-Biotechnology, 2017, 159: 181-198.
[19] PETERS-WENDISCH P G, WENDISCH V F, PAUL S, et al. Pyruvate carboxylase as an anaplerotic enzyme in Corynebacterium glutamicum[J]. Microbiology, 1997, 143(4): 1 095-1 103.
[20] ZHANG Chenglin, LI Yuan, MA Jie, et al. High production of 4-hydroxyisoleucine in Corynebacterium glutamicum by multistep metabolic engineering[J]. Metabolic Engineering, 2018, 49: 287-298.
[21] PETERS-WENDISCH P, SCHIEL B, WENDISCH VF, et al. Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum[J].Journal of Molecular Microbiology and Biotechnology, 2001, 3(2): 295-300.
[22] KIND S, JEONG W K, SCHR & #xD5;DER H, et al. Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane[J]. Metabolic Engineering, 2010, 12(4): 341-351.
[23] PETERSEN S, DE GRAAF A A, EGGELING L, et al. In vivo quantification of parallel and bidirectional fluxes in the anaplerosis of Corynebacterium glutamicum[J]. Journal of Biological Chemistry, 2000, 275(46): 35 932-35 941.
[24] NAGANO-SHOJI M, HAMAMOTO Y, MIZUNO Y, et al. Characterization of lysine acetylation of a phosphoenolpyruvate carboxylase involved in glutamate overproduction in Corynebacterium glutamicum[J]. Molecular Microbiology, 2017, 104(4): 677-689.
[25] WADA M, SAWADA K, OGURA K, et al. Effects of phosphoenolpyruvate carboxylase desensitization on glutamic acid production in Corynebacterium glutamicum ATCC 13032[J].Journal of Bioscience and Bioengineering, 2016, 121(2): 172-177.
[1] 李晨晨, 李梦丽, 江波, 张涛. 2'-岩藻糖基乳糖的生物合成菌株构建及发酵条件研究[J]. 食品与发酵工业, 2021, 47(3): 10-17.
[2] 李旋, 王加初, 刘益宁, 蒋帅, 吴鹤云, 谢希贤. 代谢工程改造大肠杆菌生产L-丝氨酸[J]. 食品与发酵工业, 2021, 47(17): 1-7.
[3] 刘慧, 陈胜玲, 徐建中, 张伟国. α-法尼烯在巴斯德毕赤酵母中的生物合成[J]. 食品与发酵工业, 2021, 47(16): 9-14.
[4] 朱灵桓, 徐沙, 李由然, 张梁, 石贵阳. 微生物法从头合成2-苯乙醇的研究进展[J]. 食品与发酵工业, 2021, 47(16): 271-277.
[5] 马巍, 邹祥. 发酵法生产L-岩藻糖的研究进展[J]. 食品与发酵工业, 2021, 47(16): 308-312.
[6] 李梦莹, 吕雪芹, 刘延峰, 李江华, 堵国成, 吴剑荣, 刘龙. 代谢工程改造大肠杆菌合成L-组氨酸[J]. 食品与发酵工业, 2021, 47(12): 1-9.
[7] 刘益宁, 秦臻, 李旋, 蒋帅, 吴鹤云, 谢希贤. 胞苷合成途径改造对大肠杆菌嘧啶核苷发酵的影响[J]. 食品与发酵工业, 2021, 47(12): 10-16.
[8] 桑昆昆, 刘晓凤, 熊智强, 张汇, 王光强, 宋馨, 艾连中, 夏永军. 透明质酸分子质量调控进展[J]. 食品与发酵工业, 2021, 47(11): 272-278.
[9] 曲丽莎, 于文文, 吕雪芹, 李江华, 堵国成, 刘龙. 生物-化学法合成维生素D的研究进展[J]. 食品与发酵工业, 2021, 47(1): 276-284.
[10] 郑鹏, 张孟娟, 黄思瑶, 康新玥, 陈叶福. 过表达乙酰-CoA相关基因提高出芽短梗霉liamocins合成能力[J]. 食品与发酵工业, 2020, 46(9): 25-30.
[11] 周胜虎, 毛银, 邓禹. 发酵过程中时空水平的动态调控策略研究进展[J]. 食品与发酵工业, 2020, 46(21): 277-283.
[12] 胡立涛, 王阳, 李佳莲, 周思延, 王道安, 尹国斌, 刘京京, 康振, 陈坚. 代谢工程改造谷氨酸棒杆菌合成透明质酸[J]. 食品与发酵工业, 2020, 46(18): 1-7.
[13] 杨帆, 苏卜利, 王永红, 张玉莲, 黄桦瑞, 张秀秀, 朱红惠. 启动子对重组大肠杆菌合成番茄红素能力的影响[J]. 食品与发酵工业, 2020, 46(17): 27-32.
[14] 季安营, 魏雪团. 改造非磷酸转移酶葡萄糖转运途径强化解淀粉芽胞杆菌合成L-酪氨酸[J]. 食品与发酵工业, 2020, 46(15): 27-31.
[15] 刘洁, 王宏涛, 钱和, 徐建中, 张伟国. 基于代谢工程构建产β-胡萝卜素重组毕赤酵母[J]. 食品与发酵工业, 2020, 46(11): 32-37.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn