Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (5): 52-58    DOI: 10.13995/j.cnki.11-1802/ts.022351
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
顶温对特香型大曲理化指标及菌群演替的影响
陈可丹1,2, 吴晓江1,2, 陈延儒1,2, 刘婷1,2, 万茵1,2, 刘成梅1,2, 吴酬飞3, 付桂明1,2*
1(食品科学与技术国家重点实验室(南昌大学),江西 南昌,330047)
2(南昌大学 食品学院,江西 南昌,330047)
3(湖州师范学院 生命科学学院,浙江 湖州,313000)
Effect of peak temperature on the succession of physicochemical index andmicrobial community of Special-flavor Daqu
CHEN Kedan1,2, WU Xiaojiang1,2, CHEN Yanru1,2, LIU Ting1,2, WAN Yin1,2, LIU Chengmei1,2, WU Choufei3, FU Guiming1,2*
1(State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China)
2(College of Food Science & Technology, Nanchang University, Nanchang 330047, China)
3(College of Life Science, Huzhou University, Huzhou 313000, China)
下载:  HTML   PDF (3268KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以特香型白酒大曲为研究对象,跟踪分析不同顶温大曲在制作过程中理化指标及菌群结构的变化规律。结果表明,中顶温曲(BM)和高顶温曲(BH)在发酵过程中的温度、水分、酸度及还原糖变化存在一定差异;Illumina MiSeq结果表明,魏斯氏菌属(Weissella)和乳杆菌属(Lactobacillus)分别为BM和BH发酵过程中的优势细菌。嗜热子囊菌属(Thermoascus)和假丝酵母属(Candida)为BH和BM的优势真菌,且发酵通过顶温区后,二者在BH中的相对丰度高于BM。同时发现WeissellaLactobacillus、片球菌属(Pediococcus)和芽孢杆菌(Bacillus)是对大曲酸度、酸性蛋白酶活力产生重要影响的细菌。出房时BM的酸性蛋白酶活力、糖化力及酯化力均高于BH,可能与根毛霉(Rhizomucor)红曲霉(Monascus)和曲霉属(Aspergillus)等丝状真菌相对丰度变化有关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈可丹
吴晓江
陈延儒
刘婷
万茵
刘成梅
吴酬飞
付桂明
关键词:  特香型大曲  温度  理化指标  菌群结构  高通量测序    
Abstract: The changes of physiochemical indexes and microbial community structure of two different-peak-temperature batches of Special-flavor Daqu were tracked during their production process. There were certain differences in the changes of temperature, moisture, acidity and reducing sugar in the fermentation process of high top temperature (BH) Daqu and medium top temperature (BM) Daqu. The results of Illumina MiSeq sequencing showed that Weissella and Lactobacillus were the dominant bacterial genus in the whole fermentation processes of BM and BH, respectively. In terms of fungi, Thermoascus and Candida were the dominant fungi genus of BM and BH, and after the peak temperature zone, their relative abundances of BH were higher than those of BM. It was also found that Weissella, Lactobacillus, Pediococcus and Bacillus were the bacterium which had significant influences on the acidity and acid protease activity of Daqu. Moreover, the acid protease activity, saccharifying power and esterifying power of BM were higher than those of BH by the end of fermentation, which may be related to the relative abundance change of filamentous fungi such as Rhizomucor, Monascus and Aspergillus.
Key words:  special-flavor Daqu    temperature    physiochemical indexes    microbial community    high-throughput sequencing
收稿日期:  2019-09-24                出版日期:  2020-03-15      发布日期:  2020-04-10      期的出版日期:  2020-03-15
基金资助: 江西省农业科技计划项目(20171BBF60044);南昌大学食品科学与技术国家重点实验室开放基金(SKLF-KF-201612)
作者简介:  硕士研究生(付桂明教授为通讯作者,E-mail:fuguiming@ncu.edu.cn)
引用本文:    
陈可丹,吴晓江,陈延儒,等. 顶温对特香型大曲理化指标及菌群演替的影响[J]. 食品与发酵工业, 2020, 46(5): 52-58.
CHEN Kedan,WU Xiaojiang,CHEN Yanru,et al. Effect of peak temperature on the succession of physicochemical index andmicrobial community of Special-flavor Daqu[J]. Food and Fermentation Industries, 2020, 46(5): 52-58.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.022351  或          http://sf1970.cnif.cn/CN/Y2020/V46/I5/52
[1] ZHENG X W, TABRIZI M R, NOUT M J R, et al. Daqu-A Traditional Chinese Liquor Fermentation Starter[J]. Journal of the Institute of Brewing, 2012, 117(1): 82-90.
[2] ZHENG X W, YAN Z, HAN B Z, et al. Complex microbiota of a Chinese “Fen” liquor fermentation starter (Fen-Daqu), revealed by culture-dependent and culture-independent methods[J]. Food Microbiology, 2012, 31(2): 293-300.
[3] XIAO C, LU Z M, ZHANG X J, et al. Bio-heat is a key environmental driver shaping the microbial community of medium-temperature Daqu[J]. Applied & Environmental Microbiology, 2017, 83(23): e01 550-17.
[4] ZHENG X W, YAN Z, NOUT M J R, et al. Characterization of the microbial community in different types of Daqu samples as revealed by 16S rRNA and 26S rRNA gene clone libraries[J]. World Journal of Microbiology and Biotechnology, 2015, 31(1): 199-208.
[5] 邢钢, 敖宗华, 王松涛, 等. 不同温度大曲制曲过程理化指标变化分析研究[J]. 酿酒科技, 2014(6): 20-23.
[6] 刘延波, 赵志军, 陈黄曌, 等. 高通量测序技术分析浓香型白酒中温曲和高温曲的细菌群落结构[J]. 现代食品科技, 2018, 34(5): 229-235.
[7] 沈剑. 特香型大曲主要微生物区系研究[D]. 南昌: 江西农业大学, 2012.
[8] 中华人民共和国工业和信息化部. QB/T4257—2011酿酒大曲通用分析方法[S]. 北京: 中国轻工业出版社. 2012.
[9] 陈钧辉. 生物化学实验(第三版)[M]. 兰州: 兰州大学出版社, 2015.
[10] 中国国家标准化管理委员会. GB/T23527-2009蛋白酶制剂[S]. 北京: 中国标准出版社. 2009.
[11] KUMAR P, SATYANARAYANA T. Overproduction of glucoamylase by a deregulated mutant of a thermophilic mould Thermomucor indicae-seudaticae[J]. Applied Biochemistry and Biotechnology, 2009, 158(1): 113-125.
[12] 沈怡方. 白酒生产技术全书[M]. 北京: 中国轻工业出版社, 1998.
[13] LI P, LIN W, LIU X, et al. Environmental factors affecting microbiota dynamics during traditional solid-state fermentation of Chinese Daqu starter[J]. Frontiers in Microbiology, 2016, 7: 1 237.
[14] 李申奥. 兼香型白酒高温大曲微生物群落演替规律的研究[D]. 武汉: 华中农业大学, 2016.
[15] 吴树坤, 谢军, 程铁辕, 等. 不同地区浓香型大曲质量指标与细菌群落相关性研究[J]. 食品研究与开发, 2019, 40(4): 158-164.
[16] DE VUYST L, HARTH H, VAN KERREBROECK S, et al. Yeast diversity of sourdoughs and associated metabolic properties and functionalities[J]. International Journal of Food Microbiology, 2016, 239: 26-34.
[17] 郭敏, 黄永光, 邱树毅, 等. 高通量测序在酱香白酒微生态多样性研究中的应用[J]. 中国酿造, 2017, 36(5): 146-151.
[18] 薛冬. 广东星湖湿地放线菌多样性及其活性研究[D]. 合肥: 安徽农业大学, 2015.
[19] LI X R, MA E B, YAN L Z, et al. Bacterial and fungal diversity in the traditional Chinese liquor fermentation process[J]. International Journal of Food Microbiology, 2011, 146(1): 31-37.
[20] 张曼, 谢军, 卫春会, 等. 浓香型单层大曲与双层大曲的质量对比分析[J]. 食品与发酵工业, 2018, 44(12): 221-228.
[21] LI P, LIANG H, LIN W T, et al. Microbiota dynamics associated with environmental conditions and potential roles of cellulolytic communities in traditional Chinese cereal starter solid-state fermentation[J]. Applied & Environmental Microbiology, 2015, 81(15): 5 144-5 156.
[22] 岳晓平, 陈朋, 朱玥明, 等. 米曲霉酸性蛋白酶基因在毕赤酵母中的异源表达及酶学性质[J]. 生物工程学报, 2019, 35(3): 415-424.
[23] 李显, 蔡琼慧, 吴凤智. 影响酱香型大曲糖化力的因素[J]. 酿酒科技, 2017(4): 79-81.
[24] CHEN B, WU Q, XU Y. Filamentous fungal diversity and community structure associated with the solid state fermentation of Chinese Maotai-flavor liquor[J]. International Journal of Food Microbiology, 2014, 179: 80-84.
[25] SONI S K, KAUR A, GUPTA J K. A solid state fermentation based bacterial α-amylase and fungal glucoamylase system and its suitability for the hydrolysis of wheat starch[J]. Process Biochemistry, 2003, 39(2): 185-192.
[26] 王小琴, 练顺才, 安明哲, 等. 大曲酯化力对固态酿酒的作用[J]. 酿酒科技, 2016(1): 63-64.
[27] 姚粟. 芝麻香型白酒高温大曲细菌群落多样性研究[D]. 北京: 北京林业大学, 2013.
[28] JIN Y, LI D, AI M, et al. Correlation between volatile profiles and microbial communities: A metabonomic approach to study Jiang-flavor liquor Daqu[J]. Food Research International, 2019, 121: 422-432.
[1] 孙杨, 王丽君, 杨套伟, 付维来, 易敢峰, 饶志明. 氧甲基转移酶编码基因ploy (A)加尾促进粘质沙雷氏菌合成灵菌红素能力研究[J]. 食品与发酵工业, 2021, 47(9): 49-56.
[2] 王迪, 王智荣, 陈湑慧, 宋军, 孔祥兵, 陈本开, 阚建全. 不同后发酵温度下曲霉型豆豉的氨基酸态氮生成动力学及品质变化研究[J]. 食品与发酵工业, 2021, 47(9): 91-99.
[3] 钱韻芳, 林婷, 曹维, 叶晶鑫, 谢晶, 杨胜平. 模拟冷链流通中温度波动对腐败希瓦氏菌的生长及其腐败产物的影响[J]. 食品与发酵工业, 2021, 47(9): 100-106.
[4] 曹联飞, 何程豪, 孙玉敬. 大蜜蜂和黑大蜜蜂蜂蜜的理化指标及抗氧化活性分析[J]. 食品与发酵工业, 2021, 47(9): 262-267.
[5] 刘梦琦, 朱媛媛, 倪慧, 王玉荣, 郭壮. 荆州地区霉豆渣真菌多样性研究[J]. 食品与发酵工业, 2021, 47(6): 241-246.
[6] 张亚楠, 申培立, 牛丹丹, 田康明, KUGEN PERMAUL, SUREN SINGH, 王正祥. 普鲁兰酶N467G突变体的酶学性质分析[J]. 食品与发酵工业, 2021, 47(5): 7-11.
[7] 闫欣鹏, 张润光, 梁琪琪, 郭晓成, 姚岗, 李玉英, 张有林. 低温结合1-MCP处理对突尼斯软籽石榴采后品质的影响[J]. 食品与发酵工业, 2021, 47(5): 147-155.
[8] 李娜, 崔梦君, 马佳佳, 雷炎, 郭壮, 张振东. 基于Illumina MiSeq测序和传统可培养方法的洪湖鲊广椒乳酸菌多样性研究[J]. 食品与发酵工业, 2021, 47(4): 110-115.
[9] 尚雪娇, 方三胜, 朱媛媛, 赵慧君, 郭壮. 霉豆渣细菌多样性解析及基因功能预测[J]. 食品与发酵工业, 2021, 47(3): 36-42.
[10] 陈珂, 刘丽莉, 郝威铭, 杨晓盼, 李媛媛. 喷雾干燥入口温度对蛋清蛋白流变和结构特性的影响[J]. 食品与发酵工业, 2021, 47(2): 15-21.
[11] 王俊奇, 黄卫红, 李双彤, 袁建军, 陈洪彬, 马应伦, 张秋芳. 永春老醋不同生产阶段细菌和真菌多样性动态变化特征分析[J]. 食品与发酵工业, 2021, 47(2): 38-44.
[12] 汪冬冬, 鲍永碧, 管锐, 唐垚, 明建英, 李嘉仪, 黄润秋, 陈功, 张其圣. 温度对甘蓝泡菜发酵过程中风味的影响[J]. 食品与发酵工业, 2021, 47(2): 233-240.
[13] 吴涵, 施文正, 王逸鑫, 杨文仙. 腌制对鱼肉风味物质及理化性质影响研究进展[J]. 食品与发酵工业, 2021, 47(2): 285-291.
[14] 石佳佳, 齐天翊, 张萌, 陈淋霞, 张笛, 包智华. 自制酵素中乳酸菌群动态分析及对重金属的吸附积累特性[J]. 食品与发酵工业, 2021, 47(1): 14-20.
[15] 吴晓红, 高生平, 蒋彩云, 王清政. 榨菜发酵过程中原核微生物群落结构及其理化因子的动态演替[J]. 食品与发酵工业, 2021, 47(1): 27-34.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn