Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (5): 160-165    DOI: 10.13995/j.cnki.11-1802/ts.022362
  生产与科研应用 本期目录 | 过刊浏览 | 高级检索 |
青稞酒曲中糖化菌的筛选鉴定及降低青稞淀粉工艺优化
王晓燕1, 王蓉福1, 张昊宇1, 院珍珍1,2,3, 曹效海1,3, 王树林1,2,3*, 杜艳2
1(青海大学 农牧学院,青海 西宁,810016)
2(青海省青稞资源综合利用工程技术研究中心,青海 西宁,810016)
3(青海-甘肃食品研发与检测联合实验室,青海 西宁,810016)
Screening and identification of saccharifying strains in the highland barley kojiand process optimization for degrading barley starch
WANG Xiaoyan1, WANG Rongfu1, ZHANG Haoyu1, YUAN Zhenzhen1,2,3, CAO Xiaohai1,3, WANG Shulin1,2,3*, Du Yan2
1(College of Agriculture and Animal Husbandry, Qinghai University,Xining 810016, China)
2(Qinghai Province Highland Barley Resources Comprehensive Utilization Engineering Technology Research Center,Xining 810016, China)
3(United Laboratory of Food Research and Testing of Qinghai-Gansu Province, Xining 810016, China)
下载:  HTML   PDF (2569KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为降低青稞淀粉含量,对青稞酒曲中糖化菌进行筛选及液体发酵工艺优化,并采用糖化菌发酵及固液分离技术生产低糖青稞粉。以糖化力为指标,筛选出糖化力为359.62 μg/(g·h)的优势糖化菌株,经形态学及分子生物学鉴定确定为米曲霉,其最适生长温度为40 ℃,最适生长pH为4.0,具有一定的耐钠离子能力,35 ℃下测定其生长曲线,发现0~3 d为米曲霉的生长迟滞期,3~5 d为对数期,6~7 d为稳定期。利用此菌株降解青稞中淀粉,在单因素试验基础上进行Box-Behnken中心组合试验,确定最佳的发酵条件为发酵时间2.8 d、发酵温度37.6 ℃、菌种接种量6.6%。结果表明,微生物降解青稞中淀粉化合物是一种高效的方法,研究结果对于低糖青稞产品的开发利用具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王晓燕
王蓉福
张昊宇
院珍珍
曹效海
王树林
杜艳
关键词:  青稞  发酵  糖化力  糖化菌  响应面    
Abstract: In order to reduce the content of starch in highland barley, the saccharification fungus was screened from barley koji and the liquid fermentation process was optimized. Low-sugar barley powder was produced by saccharification fungus fermentation and solid-liquid separation technologies. The dominant saccharification strain with saccharification efficiency of 359.62 μg/(g·h) was screened using saccharification efficiency as the index. It was further identified as Aspergillus oryzae by morphological and molecular biological identification. The optimum growth temperature and pH of this strain were 40 ℃ and 4.0, respectively. The saccharide strain had a certain ability to resist sodium ions. The growth curve of Aspergillus oryzae at 35 ℃ showed that 0-3 days was the growth retardation period, 3-5 days was the logarithmic period, and 6-7 days was the stable period. Starch in highland barley was degraded by fermentation with this screened strain. The Box-Behnken center combination design was carried out based on the single factor tests. The optimal fermentation time was 2.8 days under 37.6 ℃, and the inoculum size was 6.6%. The results showed that microbial degradation of starch in highland barley is an efficient method and the results have important value and significance for the development and utilization of low sugar highland barley products.
Key words:  highland barley    fermentation    saccharification efficiency    saccharifying strain    response surface
收稿日期:  2019-09-25                出版日期:  2020-03-15      发布日期:  2020-04-10      期的出版日期:  2020-03-15
基金资助: 青海省科技厅自然科学基金青年项目(生物法降低青稞快消化淀粉及低GI食品的研发)
作者简介:  硕士研究生(王树林教授为通讯作者,E-mail:wangsl1970@163.com)
引用本文:    
王晓燕,王蓉福,张昊宇,等. 青稞酒曲中糖化菌的筛选鉴定及降低青稞淀粉工艺优化[J]. 食品与发酵工业, 2020, 46(5): 160-165.
WANG Xiaoyan,WANG Rongfu,ZHANG Haoyu,et al. Screening and identification of saccharifying strains in the highland barley kojiand process optimization for degrading barley starch[J]. Food and Fermentation Industries, 2020, 46(5): 160-165.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.022362  或          http://sf1970.cnif.cn/CN/Y2020/V46/I5/160
[1] 张一鸣, 吴跃中, 杨士花, 等. 云南黑青稞多酚的提取及纯化工艺研究[J]. 食品科技, 2018, 43(5): 206-213.
[2] 罗静, 李玉锋, 胥霞. 青稞中的活性物质及功能研究进展[J]. 食品与发酵工业, 2018, 44(9): 300-304.
[3] 邓俊琳, 朱永清, 陈 建, 等. 青稞萌动过程中β-葡聚糖、γ-氨基丁酸和多酚的质量分数研究[J]. 中国粮油学报, 2018, 33(7): 19-25.
[4] 龚凌霄, 曹文燕, 张 英, 等. 青稞麸皮提取物抑制α-葡萄糖苷酶活性研究及成分分析[J]. 食品科学, 2017, 38(6): 179-184.
[5] 张文会. 西藏发展青稞加工产业的优势分析[J]. 现代农业科技, 2014(10): 320-321.
[6] 黄迪宇. 青稞酒糟饮料的制备及稳定性研究[D]. 无锡:江南大学, 2017.
[7] 安攀宇. 青稞慢性消化淀粉制备条件的优化研究[J]. 现代食品, 2016(13): 111-114.
[8] 邱文竹. 乙酰化淀粉的合成及其酶降解研究[D]. 大连:大连理工大学, 2015.
[9] 王 静, 翟 璐, 张销寒, 等. 融合淀粉酶AmyP-Clo对大米生淀粉的高效降解[J]. 微生物学报, 2017, 57(8): 1 301-1 307.
[10] ISABEL REYES, FRANCISCO CRUZ-SOSA, ANGELICA ROMAN-GUERRERO. Structural changes of corn starch during Saccharomyces cerevisiae fermentation[J]. Starch/Stärke, 2016, 68: 961-971.
[11] HE Junjun, LUO Ping, LI Qinfen, et al. Screening of starch-degrading strains in bagasse and identification of strains s2g5-1 and s3g4-8[J]. Agricultural Science & Technology, 2011, 12(1): 45-49.
[12] CRISTIANE DE OLIVEIRA LOPES, MARIA DE FA′TIMA P?′CCOLO BARCELOS, C?′NTIA NAYARA DE GOES VIEIRA, et al. Effects of sprouted and fermented quinoa (Chenopodium quinoa) on glycemic index of diet and biochemical parameters of blood of Wistar rats fed high carbohydrate diet[J]. Food Sci Technol, 2019, 56(1): 40-48.
[13] GAN Renyou, LI Huabin, ANILGUNARATNE, et al. Effects of fermented edible seeds and their products on human health:Bioactive components and bioactivities[J]. Compermention Review in Food Science and Food Safety. 2017, 16: 489-531.
[14] 袁亦舟, 张伟国, 徐建中. 青稞酒曲微生物多样性分析及米根霉制曲条件优化[J]. 食品与发酵工业, 2018, 44(5): 39-45.
[15] 班世栋, 王晓丹, 陈孟强, 等. 酱香型大曲中具产酶功能霉菌的分离筛选[J]. 酿酒, 2014, 41(4): 31-36.
[16] 李绍亮, 李学思, 侯小歌, 等. 宋河酒曲中主要霉菌的鉴定及其产酶特性的研究[J]. 酿酒, 2016, 43(6): 24-29.
[17] 滕巍, 李国莹, 刘小波, 等. 大曲中产酯化酶菌株的分离鉴定及固体发酵工艺优化[J]. 食品与生物技术学报, 2016, 35(9): 971-977.
[18] 刘国生. 微生物学实验技术[M]. 北京: 科学出版社, 2007.
[19] 魏景超. 真菌鉴定手册[M]. 上海: 上海科学技术出版社, 1979.
[20] 施思, 彭智辅, 乔宗伟, 等. 浓香型大曲贮藏过程中糖化力发酵力变化及真菌多样性分析[J]. 食品与发酵工业, 2017, 43(5): 76-79.
[21] 马丹, 王德宝, 靳志敏, 等. 内蒙古传统肉肠中乳酸菌的筛选及生长性能测定[J]. 食品科技, 2015, 40(3): 12-15.
[22] 马勇, 樊永军. 用OD值监测产油酵母培养过程中的菌体生物量变化[J]. 安徽农业科学, 2011, 39(12): 7 342-7 346.
[23] 程柳, 李静. 3,5-二硝基水杨酸法测定山楂片中还原糖和总糖质量分数[J]. 轻工科技, 2016, 32(3): 25-28.
[24] 杨俊杰, 严进, 陆兔林. 苯酚-硫酸法联合DNS法测定商陆多糖及响应面法优化超声波辅助提取研究[J]. 中国现代中药, 2017, 19(12): 1 743-1749;1753.
[25] CÍNTIA LADEIRA HANDAA, FERNANDO SANCHES DE LIMAA, MARCELA FERNANDA GETON GUELFIA, et al. Parameters of the fermentation of soybean flour by Monascus purpureus or Aspergillus oryzae on the production of bioactive compounds and antioxidant activity[J]. Food Chemistry, 2019, 271: 274-283.
[26] 蒲立柠, 陈光静, 阚建全. 响应面试验优化青稞麸皮薏仁红曲霉发酵工艺[J]. 食品科学, 2017, 38(2): 264-270.
[27] 白飞荣, 姚粟, 凌空, 等. 黄曲霉和米曲霉的多相鉴定方法[J]. 微生物学通报, 2018, 45(1): 215-226.
[1] 赵雨, 郭建华, 张春枝. 蜡状芽孢杆菌ZY12产磷脂酶D的影响因素[J]. 食品与发酵工业, 2021, 47(9): 57-62.
[2] 王迪, 王智荣, 陈湑慧, 宋军, 孔祥兵, 陈本开, 阚建全. 不同后发酵温度下曲霉型豆豉的氨基酸态氮生成动力学及品质变化研究[J]. 食品与发酵工业, 2021, 47(9): 91-99.
[3] 李云嵌, 杨曦, 刘江, 吴娟, 王振兴, 张雪春. 超声波辅助碱法提取美藤果分离蛋白及其加工性质研究[J]. 食品与发酵工业, 2021, 47(9): 128-135.
[4] 刘梦, 缪礼鸿, 刘蒲临, 王霜, 高瑞杰. 马克斯克鲁维酵母与酿酒酵母混合发酵对液态法黄酒风味的影响[J]. 食品与发酵工业, 2021, 47(9): 160-167.
[5] 王伟佳, 刘爱国, 廖振宇, 刘立增, 孙丽婷, 杨红, 刘蕊, 刘长旭, 李雨轩. 发酵乳中内源性苯甲酸产生的影响因素[J]. 食品与发酵工业, 2021, 47(9): 168-173.
[6] 黄力, 刘功良, 费永涛, 高苏娟, 白卫东, 刘锐. 微生物航天育种及其在发酵食品微生物中的应用研究概述[J]. 食品与发酵工业, 2021, 47(9): 321-327.
[7] 鲁朝凤, 黄佳琦, 黄勇桦, 杨士花, 陈壁, 杨明静, 李永强. 青稞膳食纤维和多酚对肠道微生物的协同调节作用[J]. 食品与发酵工业, 2021, 47(8): 6-13.
[8] 赵帅东, 刘婷, 季旭, 杨梓璐, 尹轩威, 施文正, 汪立平, 宁喜斌. 利用外源蛋白酶和曲霉菌YL001加速沙丁鱼鱼露的发酵[J]. 食品与发酵工业, 2021, 47(8): 14-20.
[9] 唐富豪, 滕建文, 韦保耀, 黄丽, 夏宁, 覃超. 基于非靶向代谢组学评价传统发酵对客家酸芥菜酚类化合物组成的影响[J]. 食品与发酵工业, 2021, 47(8): 128-133.
[10] 王子涵, 向敏, 徐茂, 蒋和体. 响应面优化黑果腺肋花楸汁澄清工艺及其抗氧化活性评价[J]. 食品与发酵工业, 2021, 47(8): 189-196.
[11] 李丽, 杨云丽, 杨小凡, 何伟, 袁恺, 朱威宇, 彭超, 何一凡, 董银卯, 周卫强. 液体发酵生产灵芝三萜酸的过程调控研究进展[J]. 食品与发酵工业, 2021, 47(8): 304-312.
[12] 刘景阳, 刘云鹏, 徐庆阳. 谷氨酸全营养流加发酵新工艺[J]. 食品与发酵工业, 2021, 47(7): 14-20.
[13] 高宇豪, 吴勇杰, 朱亚鑫, 付静, 徐建国, 王松涛, 徐国强, 张晓梅, 史劲松, 许正宏. 产谷胱甘肽毕赤酵母工程菌的构建及能量调控[J]. 食品与发酵工业, 2021, 47(7): 21-26.
[14] 邓祥宜, 李继伟, 何立超, 张原源, 黄国威, 鲍晓龙, 邱朝坤. 宣恩火腿发酵过程中表面微生物群落演替规律[J]. 食品与发酵工业, 2021, 47(7): 34-42.
[15] 韩宛芸, 张长懿, 顾泽鹏, 段小雨, 孙庆杰, 邱立忠, 卞希良, 邬应龙, 刘韫滔. 高产β-葡聚糖的黄伞菌株分离、鉴定及其体外模拟消化[J]. 食品与发酵工业, 2021, 47(7): 51-57.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn