Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (5): 231-239    DOI: 10.13995/j.cnki.11-1802/ts.022395
  贮运与保鲜 本期目录 | 过刊浏览 | 高级检索 |
不同初始机体温度对热水处理西葫芦果实低温贮藏品质和活性氧代谢的影响
姜雪1, 张敏1,2,3,4*, 赵昱瑄1, 郝爽1, 李佳乐1, 胡均如1, 盖晓阳1, 厉建国1
1(上海海洋大学 食品学院,上海,201306)
2 (上海水产品加工及贮藏工程技术研究中心,上海,201306)
3(上海冷链装备性能与节能评价专业技术服务平台,上海,201306)
4(食品科学与工程国家级实验教学示范中心(上海海洋大学),上海,201306)
Effects of different initial body temperatures on low-temperature storage qualityand active oxygen metabolism of hot water treated zucchini fruit
JIANG Xue1, ZHANG Min1,2,3,4*, ZHAO Yuxuan1, HAO Shuang1, LI Jiale1, HU Junru1, GAI Xiaoyang1, LI Jianguo1
1(College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China)
2(Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China)
3(Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance andEnergy Saving Evaluation, Shanghai 201306, China)
4(National Experimental Teaching Demonstration Center for Food Science and Engineering(Shanghai Ocean University),Shanghai 201306, China)
下载:  HTML   PDF (3643KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为评价果实自身初始机体温度对热处理西葫芦果实冷藏品质和活性氧代谢的影响,该文研究了西葫芦果实不同初始温度(15、20、25 ℃)经外界热水处理(43.3 ℃、28.4 min)后在(4±0.5)℃贮藏条件下对果实冷害及活性氧代谢的影响。结果表明:经相同的热处理,果实机体温度为25 ℃处理组能显著降低西葫芦电解质外渗率和丙二醛(malondialdehyde,MDA)含量,维持超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)、过氧化物酶(peroxidase,POD)和抗坏血酸过氧化物酶(ascorbate peroxidase,APX)的高活性,同时该处理组能保持抗坏血酸(ascorbic acid,ASA)、还原型谷胱甘肽(reduced glutathione,GSH)的高含量,通过酶促和非酶促两类过氧化物防御系统共同调控西葫芦果实活性氧代谢平衡,维持高活性氧清除能力,降低过氧化氢(hydrogen peroxide,H2O2)与超氧阴离子(superoxide anion,O-2·)活性氧自由基对果实的伤害,减缓该组果实失重率和色差值的升高,提高果实硬度与贮藏前中期的可溶性固形物含量(soluable solid content,SSC),有效降低果实冷害,提高西葫芦贮藏品质,延缓果实衰老进程。该研究为西葫芦贮藏保鲜、果蔬热处理传热过程的进一步研究提供了一定的参考与借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜雪
张敏
赵昱瑄
郝爽
李佳乐
胡均如
盖晓阳
厉建国
关键词:  西葫芦  初始机体温度  热处理  低温贮藏  冷害  活性氧    
Abstract: To evaluate the effect of the initial body temperature of the zucchini fruit on the quality and active oxygen metabolism during the cold storage period after heat treatment, the effects of different initial body temperatures(15,20,25 ℃) on chilling injury and active oxygen metabolism of zucchini fruit were studied under the conditions of hot water treatment(43.3 ℃, 28.4 min) and cold storage at (4±0.5)℃. The results showed that after the same hot treatment condition, the heat treatment of the fruit body temperature for 25 ℃ could significantly reduce the electrolyte leakage rate and malondialdehyde(MDA) content, maintain high activity of superoxide dismutase(SOD), catalase(CAT), peroxidase(POD) and ascorbate peroxidase(APX), and the high content of ascorbic acid(ASA) and reduced glutathione(GSH) as well. Through the enzymatic and non-enzymatic peroxidation defense system, the balance of active oxygen metabolism in zucchini fruit was regulated to maintain the capacity of high active oxygen scavenging and reduce the damage of active oxygen free radicals of hydrogen peroxide (H2O2) and superoxide anion (O-2·) on fruit. The increase of weight loss rate and color difference value of fruit was slowed down. The fruits′ hardness and soluble solid content(SSC) in the early and middle stages of storage were improved. Thus, the chilling injury of zucchini fruits was alleviated, the storage quality was improved, and the aging process was delayed. This study could be helpful for the preservation of zucchini fruit and further research of the heat treatment process of fruits and vegetables.
Key words:  zucchini    initial body temperature    heat treatment    low temperature storage    chilling injury    reactive oxygen
收稿日期:  2019-09-27                出版日期:  2020-03-15      发布日期:  2019-11-26      期的出版日期:  2020-03-15
基金资助: 国家自然科学基金面上项目(31371526)
作者简介:  硕士研究生(张敏教授为通讯作者,E-mail:zhangm@shou.edu.cn)
引用本文:    
姜雪,张敏,赵昱瑄,等. 不同初始机体温度对热水处理西葫芦果实低温贮藏品质和活性氧代谢的影响[J]. 食品与发酵工业, 2020, 46(5): 231-239.
JIANG Xue,ZHANG Min,ZHAO Yuxuan,et al. Effects of different initial body temperatures on low-temperature storage qualityand active oxygen metabolism of hot water treated zucchini fruit[J]. Food and Fermentation Industries, 2020, 46(5): 231-239.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.022395  或          http://sf1970.cnif.cn/CN/Y2020/V46/I5/231
[1] 郑剑超,董飞,陈烨华,等.不同基质配比对西葫芦生长发育的影响[J].浙江农业科学,2019,60(8):1 415-1 417.
[2] 张黎杰,周玲玲,田福发,等.日光温室西葫芦菌渣复合基质栽培技术[J].中国蔬菜,2018,31(3):56-57.
[3] 丁克明,张光全,康蓉.西葫芦品种比较试验[J].现代农业科技,2019,15:89-91.
[4] 梅燚,刘哲,杨金明,等.徐州地区西葫芦高效栽培模式及潜力品种推荐[J].蔬菜,2015(10):62-64.
[5] ZHANG M, LIU W, LI C H, et al. Postharvest hot water dipping and hot water forced convection treatments alleviate chilling injury for zucchini fruit during cold storage[J]. Scientia Horticulturae, 2019,249:219-227.
[6] 王静,茅林春,李学文,等.热处理降低哈密瓜果实活性氧代谢减轻冷害[J].农业工程学报,2016,32(2):280-286.
[7] ZHANG Y, JIN P, HUANG Y, et al. Effect of hot water combined with glycine betaine alleviates chilling injury in cold-stored loquat fruit[J]. Postharvest Biology and Technology, 2016,118:141-147.
[8] ENDO H, OSE K, BAI J, et al. Effect of hot water treatment on chilling injury incidence and antioxidative responses of mature green mume (Prunus mume) fruit during low temperature storage[J]. Scientia Horticulturae, 2019,246:550-556.
[9] HUAN C, HAN S, JIANG L, et al. Postharvest hot air and hot water treatments affect the antioxidant system in peach fruit during refrigerated storage[J]. Postharvest Biology and Technology, 2017,126:1-14.
[10] NASER F, RABIEI V, RAZAVI F, et al. Effect of calcium lactate in combination with hot water treatment on the nutritional quality of persimmon fruit during cold storage[J]. Scientia Horticulturae, 2018,233:114-123.
[11] 程玉娇,李云云,张敏.热处理对‘塔罗科’血橙物流变温环境下的保鲜效果[J].食品科学,2016,37(6):254-260.
[12] ZHANG Y, JI H, YU J, et al. Effect of cold and heat shock treatment on the color development of mature green tomatoes and the roles of their antioxidant enzymes[J]. Food and Bioprocess Technology, 2018,11(3):705-709.
[13] 干春,何志平,林菊,等.热处理对黄花梨冷藏品质和活性氧代谢的影响[J].食品科学,2013,34(2):303-306.
[14] 李春晖,张敏,艾文婷,等.不同温度场响应对西葫芦采后贮藏品质的影响[J].食品工业科技,2018,39(2):272-277.
[15] 曹建康,姜微波,赵玉梅.果蔬采后生理生化实验指导[M].北京:中国轻工业出版社,2011.
[16] 付云云,蒋成,张静,等.乳酸钙对仔姜低温贮藏期间品质影响的多变量分析[J/OL].食品科学. http://kns.cnki.net/kcms/detail/11.2206.TS.20190507.1829.032.html.
[17] 邵婷婷,张敏,刘威,等.采后热水处理对青椒果实低温贮藏期间活性氧代谢及抗氧化物质的影响[J].食品与发酵工业, 2019,45(12):133-139.
[18] 徐子涵.南美白对虾的无水低温胁迫响应和无水保活运输装置[D].杭州:浙江大学,2018.
[19] 李亚玲,崔宽波,石玲,等.冰温贮藏对杏果实冷害及活性氧代谢的影响[J/OL].食品科学. http://kns.cnki.net/kcms/detail/11.2206.TS.20190826.1612.029.html.
[20] 郑鄢燕,代晓霞,生吉萍,等.热处理与内源H2O2对黄瓜抗冷性和抗氧化酶活性的影响[J].食品科学,2012,33(22):314-318.
[21] 孔祥佳,林河通,郑俊峰,等.诱导冷藏橄榄果实抗冷性的适宜热空气处理条件优化[J].农业工程学报,2011,27(8):371-376.
[22] 沈丽雯,刘娟,董红敏,等.热激处理对黄瓜低温贮藏特性的影响[J].食品工业科技,2015,36(2):343-348.
[23] 马秋诗,饶景萍,李秀芳,等.贮前热水处理对‘红阳’猕猴桃果实冷害的影响[J].食品科学,2014,35(14):256-261.
[24] 郭雨萱,郝利平,卢银洁,等.不同处理对茄子采后冷害及相关酶活性的影响[J].山西农业大学学报(自然科学版), 2016,36(9):668-672.
[25] SHAO X, TU K. Hot air treatment improved the chilling resistance of loquat fruit under cold storage[J]. Journal of Food Processing and Preservation, 2014,38(2):10.
[26] 赵云峰,顾佳宇,尹学杰,等.热处理对采后茄子果实冷害和活性氧代谢的影响[J].扬州大学学报(农业与生命科学版),2011,32(3):78-82.
[27] AMBUKO J, ZANOL G C, SEKOZAWA Y, et al. Reactive oxygen species (ROS) scavenging in hot air preconditioning mediated alleviation of chilling injury in banana fruits[J]. Journal of Agricultural Science,2013,5(1):319-331.
[28] BOONKORN P. Impact of hot water soaking on antioxidant enzyme activities and some qualities of storage tomato fruits[J]. International Food Research Journal, 2016,23(3):934-938.
[29] 巴良杰,罗冬兰,杨飒,等.热处理对采后火龙果低温贮藏期生理指标的影响[J].中国南方果树,2018,47(6):39-44.
[30] 张福平,林晓萍.热水处理对黄皮果实贮藏品质的影响(简报)[J].农业工程学报,2009,25(4):299-303.
[31] 王云香,王清,高丽朴,等.低温预贮对青圆椒采后生理特性的影响研究[J].食品工业,2018,39(9):22-26.
[32] ENDO H, MIYAZAKI K, OSE K, et al. Hot water treatment to alleviate chilling injury and enhance ascorbate-glutathione cycle in sweet pepper fruit during postharvest cold storage[J]. Scientia Horticulturae, 2019,257.
[33] UMMARAT N. Changes in antioxidant and fruit quality in hot water-treated ‘Hom Thong’ banana fruit during storage[J]. Scientia Horticulturae, 2011,130(4):801-807.
[34] 陈楚英,周梦娇,韩舒睿,等.热空气处理对冷藏新余蜜橘活性氧代谢的影响[J].江西农业大学学报,2014(3):507-513.
[1] 冯艳钰, 臧延青. 三种小麦麸皮总黄酮的体外抗氧化活性[J]. 食品与发酵工业, 2021, 47(9): 16-24.
[2] 师中迪, 宋雪婷, 余旭亚. 外源褪黑素对盐胁迫下单针藻Monoraphidium sp.QLY-1油脂合成的影响[J]. 食品与发酵工业, 2021, 47(9): 63-69.
[3] 卢剑青, 周明, 蔡志鹏, 王静, 朱丽琴, 李晓明, 罗运梅, 陈金印, 沈勇根. 采收期、贮藏时间及加工单元操作对赣南脐橙汁苦味物质含量的影响[J]. 食品与发酵工业, 2021, 47(6): 105-113.
[4] 王伟佳, 高晓夏月, 刘爱国, 刘立增, 王鹏程, 杨毅. 不同热处理无乳糖酸奶与普通酸奶品质的比较[J]. 食品与发酵工业, 2021, 47(5): 99-104.
[5] 张珮, 王银红, 李高阳, 单杨, 朱向荣. 基于近红外光谱的桃果实冷害识别分析[J]. 食品与发酵工业, 2021, 47(2): 254-259.
[6] 丁玉先, 张娜, 陈爱强. 采后果蔬热处理条件的传热特性分析[J]. 食品与发酵工业, 2020, 46(7): 188-193.
[7] 赵昱瑄, 张敏, 姜雪, 胡均如, 李佳乐, 盖晓阳. 短时热处理对低温逆境下黄瓜不同部位的冷害及活性氧代谢影响[J]. 食品与发酵工业, 2020, 46(7): 180-187.
[8] 杨晓月, 郜海燕, 钟迪颖, 张润光, 张有林. 秦薯5号甘薯营养成分测定及贮前低温处理对贮藏品质的影响[J]. 食品与发酵工业, 2020, 46(7): 201-206.
[9] 李根, 初乐, 马寅斐, 和法涛, 丁辰, 朱风涛, 赵岩. 新型热和非热加工对非浓缩还原苹果汁品质影响的研究现状[J]. 食品与发酵工业, 2020, 46(6): 301-306.
[10] 汪永红, 罗晓敏, 刘顺枝, 胡位荣. 红肉蜜柚果实冷藏过程中的活性氧代谢[J]. 食品与发酵工业, 2020, 46(3): 207-211.
[11] 吴姗鸿, 张洪翠, 代慧, 段志蓉, 张敏. 乙烯与热处理对常温物流甘薯发芽及品质的影响[J]. 食品与发酵工业, 2020, 46(22): 180-186.
[12] 肖婷, 何欣遥, 吴姗鸿, 代慧, 段志蓉, 张敏. 乙醇熏蒸对小白菜的护绿机理[J]. 食品与发酵工业, 2020, 46(21): 173-180.
[13] 任思, 刘丽娅, 庞淑婕, 李娜娜, 周素梅, 王立. 羧甲基纤维素钠对绿豆分离蛋白乳液稳定性的影响[J]. 食品与发酵工业, 2020, 46(18): 41-46.
[14] 丁亮亮, 刘进生, 顾鹏帅, 唐蕾. 大肠杆菌过氧化物酶EfeB在细胞氧化应激中的作用[J]. 食品与发酵工业, 2020, 46(17): 33-39.
[15] 陈彬和, 赵炳天, 孙亚娟, 李云兴. 大豆发酵液的抗氧化活性[J]. 食品与发酵工业, 2020, 46(17): 119-124.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn