Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (3): 1-7    DOI: 10.13995/j.cnki.11-1802/ts.022536
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
低产尿素黄酒酵母工程菌的酿造特性
吴殿辉1,2,3, 李晓敏1,2,3, 蔡国林1,2,3, 孙军勇1,2,3, 谢广发3,4, 陆健1,2,3*
1 (粮食发酵工艺与技术国家工程实验室(江南大学),江苏 无锡,214122)
2 (工业生物技术教育部重点实验室(江南大学),江苏 无锡,214122)
3 (江南大学 生物工程学院,江苏 无锡,214122)
4 (浙江树人大学 生物与环境工程学院,浙江 杭州,310015)
Brewing characteristics of the engineered Saccharomyces cerevisiae with low production of urea in Huangjiu
WU Dianhui1,2,3, LI Xiaomin1,2,3, CAI Guolin1,2,3, SUN Junyong1,2,3, XIE Guangfa3,4, LU Jian1,2,3*
1 (National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China)
2 (The Key Laboratory of Industrial Biotechnology, Jiangnan University, Wuxi 214122, China)
3 (School of Biotechnology, Jiangnan University, Wuxi 214122, China)
4 (School of Biological and Enviromental Engineering, Zhejiang Shuren University, Hangzhou 310015, China)
下载:  HTML   PDF (2981KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为考察酵母工程菌在黄酒酿造过程中的发酵性能及其降低发酵液中尿素和氨基甲酸乙酯(ethyl carbamate, EC)的能力,以前期构建的降低黄酒中尿素和EC效果最好的酵母工程菌N85DUR1,2-c为研究对象,利用单因素试验考察黄酒发酵工艺对其降低发酵液中尿素和EC能力的影响,并对其在生产试验过程中的发酵性能进行研究。结果表明,酵母接种量、发酵温度以及麦曲添加量等工艺参数对工程菌N85DUR1,2-c低产尿素和EC的性能没有明显的影响,且含量低于亲本菌株。50 kL生产试验表明,工程菌N85DUR1,2-c所酿黄酒中理化指标含量正常,符合黄酒国标的要求。而N85DUR1,2-c发酵液中尿素和EC的含量分别为(2.4±0.2) mg/L和(14.9±0.6) μg/L,较亲本菌株分别降低了90.7%和54.6%,且贮存过程中EC含量增加缓慢。说明酵母工程菌N85DUR1,2-c在不改变黄酒优良品质的前提下,能够显著地降低发酵液中尿素的含量,可以从根源上减少黄酒中EC的积累,提高饮用安全性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴殿辉
李晓敏
蔡国林
孙军勇
谢广发
陆健
关键词:  黄酒  酿酒酵母  氨基甲酸乙酯  尿素  酿造特性    
Abstract: The purpose of this study was to investigate the fermentation performance of the engineered Saccharomyces cerevisiae strain and its capacity to decrease urea and ethyl carbamate (EC) in Huangjiu brewing. Single factor experiments were conducted to evaluate the effect of fermentation parameters on the brewing performance of the constructed S. cerevisiae strain N85DUR1,2-c, which performed best in reducing the concentrations of urea and EC. Meanwhile, an industrial production experiment was carried out in a Huangjiu brewery to study its fermentation characteristics. The results showed that the parameters including inoculation concentration, fermentation temperature and the amount of wheat Qu had no significant influences on urea and EC elimination property of N85DUR1,2-c. At industrial fermentation in 50 kiloliters tank, the contents of ethanol, total sugar, amino acid nitrogen, total acid and main flavour compounds in the fermentation liquor of N85DUR1,2-c were basically in accordance with the China national standard of Huangjiu. In addition, the concentrations of urea and EC were (2.4±0.2) mg/L and (14.9±0.6) μg/L in the liquor fermented by N85DUR1,2-c, which were 90.7% and 54.6% respectively which was less than in parental strain. Moreover, EC content in the Huangjiu sample fermented with N85DUR1,2-c increased at a much lower rate during storage compared with control. The concentration of urea can be significantly reduced in the Huangjiu sample fermented by constructed strain N85DUR1,2-c. Therefore, the EC level in rice wine could be fundamentally reduced, which is beneficial to its safety.
Key words:  Huangjiu(Chinese rice wine)    Saccharomyces cerevisiae    ethyl carbamate    urea    fermentation characteristics
收稿日期:  2019-10-14                出版日期:  2020-02-15      发布日期:  2020-03-13      期的出版日期:  2020-02-15
基金资助: 国家自然科学基金(31701588,31701730);江苏省自然科学基金(BK20170178);中央高校基本科研业务费专项资金(JUSRP11965);江苏高校优势学科建设工程资助项目;高等学校学科创新引智计划(111计划)资助项目(111-2-06);江苏省现代工业发酵协同创新中心资助项目
作者简介:  博士,助理研究员(陆健教授为通讯作者,E-mail:jlu@jiangnan.edu.cn)。
引用本文:    
吴殿辉,李晓敏,蔡国林,等. 低产尿素黄酒酵母工程菌的酿造特性[J]. 食品与发酵工业, 2020, 46(3): 1-7.
WU Dianhui,LI Xiaomin,CAI Guolin,et al. Brewing characteristics of the engineered Saccharomyces cerevisiae with low production of urea in Huangjiu[J]. Food and Fermentation Industries, 2020, 46(3): 1-7.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.022536  或          http://sf1970.cnif.cn/CN/Y2020/V46/I3/1
[1] 张顺荣, 范文来, 徐岩. 不同香型白酒中氨基甲酸乙酯的研究与风险评估 [J]. 食品与发酵工业, 2016, 42(5): 198-202.
[2] WU P G, PAN X D, WANG L Y, et al. A survey of ethyl carbamate in fermented foods and beverages from Zhejiang, China [J]. Food Control, 2012, 23(1): 286-288.
[3] NBREGA I C, PEREIRA J A, PAIVA J E, et al. Ethyl carbamate in cachaça (Brazilian sugarcane spirit): Extended survey confirms simple mitigation approaches in pot still distillation [J]. Food Chemistry, 2011, 127(3): 1 243-1 247.
[4] UTHURRY C A, VARELA F, COLOMO B, et al. Ethyl carbamate concentrations of typical Spanish red wines [J]. Food Chemistry, 2004, 88(3): 329-336.
[5] LIU Y P, DONG B, QIN Z S, et al. Ethyl carbamate levels in wine and spirits from markets in Hebei Province, China [J]. Food Additives and Contaminants: Part B, 2011, 4(1): 1-5.
[6] 华颖, 茅佩卿, 刘柱. GC-MS法测定黄酒和食用酒精中的氨基甲酸乙酯 [J]. 食品与发酵工业, 2019, 45(14): 196-202.
[7] KIM Y G, LYU J, KIM M K, et al. Effect of citrulline, urea, ethanol, and urease on the formation of ethyl carbamate in soybean paste model system [J]. Food Chemistry, 2015, 189:74-79.
[8] TANG A, CHUNG S, KWONG K, et al. Ethyl carbamate in fermented foods and beverages: Dietary exposure of the Hong Kong population in 2007-2008 [J]. Food Additives and Contaminants: Part B, 2011, 4(3): 195-204.
[9] FU M L, LIU J, CHEN Q H, et al. Determination of ethyl carbamate in Chinese yellow rice wine using high-performance liquid chromatography with fluorescence detection [J]. International Journal of Food Science and Technology, 2010, 45(6): 1 297-1 302.
[10] WANG P H, SUN J Y, LI X M, et al. Contribution of citrulline to the formation of ethyl carbamate during Chinese rice wine production [J]. Food Additives and Contaminants: Part A, 2014, 31(4): 587-592.
[11] WU D H, LI X M, SHEN C, et al. Decreased ethyl carbamate generation during Chinese rice wine fermentation by disruption of CAR1 in an industrial yeast strain [J]. International Journal of Food Microbiology, 2014, 180:19-23.
[12] WU D H, LI X M, LU J, et al. Constitutive expression of the DUR1, 2 gene in an industrial yeast strain to minimize ethyl carbamate production during Chinese rice wine fermentation [J]. FEMS Microbiology Letters, 2016, 363(1): 1-6.
[13] WU D H, LI X M, SHEN C, et al. Isolation of a haploid from an industrial Chinese rice wine yeast for metabolic engineering manipulation [J]. Journal of the Institute of Brewing, 2013, 119(4): 288-293.
[14] 中国国家标准化管理委员会. GB/T 13662—2018 黄酒 [S]. 北京: 中国标准出版社, 2018.
[15] 邢江涛, 钟其顶, 熊正河, 等. 高效液相色谱-荧光检测器法测定黄酒中尿素含量 [J]. 酿酒科技, 2011(3): 104-106.
[16] 任江伟. 黄酒中氨基甲酸乙酯生成动力学的研究 [D]. 无锡: 江南大学, 2007.
[17] ZHAO X R, ZOU H J, FU J W, et al. Nitrogen regulation involved in the accumulation of urea in Saccharomyces cerevisiae [J]. Yeast, 2013, 30(11): 437-447.
[18] ZHAO X R, ZOU H J, DU G C, et al. Effects of nitrogen catabolite repression-related amino acids on the flavour of rice wine [J]. Journal of the Institute of Brewing, 2015, 121(4): 581-588.
[19] 戈瑚瑚, 倪莉. 黄酒饮后产生上头上火的原因探究 [J]. 食品与发酵工业, 2010, 36(8): 136-139.
[20] WU P G, CAI C G, SHEN X H, et al. Formation of ethyl carbamate and changes during fermentation and storage of yellow rice wine [J]. Food Chemistry, 2014, 152: 108-112.
[21] WU H M, CHEN L, PAN G S, et al. Study on the changing concentration of ethyl carbamate in yellow rice wine during production and storage by gas chromatography/mass spectrometry [J]. European Food Research and Technology, 2012, 235(5): 779-782.
[1] 李童, 钱斌, 周建弟, 徐岩, 王栋. 中性脲酶固定化降解黄酒中尿素[J]. 食品与发酵工业, 2021, 47(9): 70-75.
[2] 刘梦, 缪礼鸿, 刘蒲临, 王霜, 高瑞杰. 马克斯克鲁维酵母与酿酒酵母混合发酵对液态法黄酒风味的影响[J]. 食品与发酵工业, 2021, 47(9): 160-167.
[3] 史瑛, 冯欣静, 周志磊, 姬中伟, 徐岳正, 毛健. 黄酒多糖对炎症性肠病及便秘作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(9): 275-283.
[4] 张波, 谢广发, 李国龙, 孙国昌, 金建明, 朱炜俊, 刘菊. 黄酒生物酸化浸米与浸米浆水的利用[J]. 食品与发酵工业, 2021, 47(7): 168-174.
[5] 蒋彰, 周志磊, 姬中伟, 韩吉臣, 毛健, 周哲敏. 即墨黄酒煮糜工艺对挥发性物质的影响[J]. 食品与发酵工业, 2021, 47(5): 86-91.
[6] 宁亚维, 侯琳琳, 于同月, 刘茁, 杨正, 王志新, 贾英民. UPLC-MS/MS法快速测定乳酸菌发酵食品中的苯乳酸[J]. 食品与发酵工业, 2021, 47(5): 174-179.
[7] 杨新, 陈莉, 杨双全, 卢红梅, 章之柱. 不同培养条件下酿酒酵母菌的转录组差异分析[J]. 食品与发酵工业, 2021, 47(4): 102-109.
[8] 余鸿飞, 姜娇, 董琦楠, 黄蓉, 商华, 叶冬青, 刘延琳. 微孔板筛选酿酒酵母乙醇发酵相关性状的因素探究[J]. 食品与发酵工业, 2021, 47(20): 8-14.
[9] 张晓晓, 任剑星, 刘凯毅, 李潇, 董健. TOR1基因缺失对酿酒酵母耐受性的影响[J]. 食品与发酵工业, 2021, 47(2): 1-7.
[10] 宗原, 刘登峰, 刘以安. 基于改进蚁狮优化算法的黄酒发酵过程模型的参数辨识[J]. 食品与发酵工业, 2021, 47(2): 153-159.
[11] 徐佳, 黄雪芹, 杨建飞, 易媛, 马倩, 胡琨, 左勇. 酿酒酵母中BAT2基因敲除对桑葚酒中高级醇的影响[J]. 食品与发酵工业, 2021, 47(19): 133-139.
[12] 高惠芳, 邵明龙, 张显, 杨套伟, 徐美娟, 高晓冬, 饶志明. 五环三萜酿酒酵母细胞工厂的构建[J]. 食品与发酵工业, 2021, 47(18): 8-14.
[13] 曾令杰, 丰丕雪, 黄锦翔, 安佳星, 赵雪梅, 龙秀锋, 伍时华, 易弋. 基于转录组测序技术的儿茶酚胁迫下酿酒酵母响应机制[J]. 食品与发酵工业, 2021, 47(17): 47-53.
[14] 朱灵桓, 徐沙, 李由然, 张梁, 石贵阳. 酿酒酵母PDC5基因的缺失对2-苯乙醇合成的影响及相关代谢改造[J]. 食品与发酵工业, 2021, 47(16): 22-30.
[15] 孙可澄, 尹花, 赵鑫锐, 陈璐, 李江华, 侯晓平, 堵国成. 多轮ARTP诱变快速筛选低产乙醛工业啤酒酵母[J]. 食品与发酵工业, 2021, 47(15): 56-62.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn