Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (6): 140-147    DOI: 10.13995/j.cnki.11-1802/ts.022555
  生产与科研应用 本期目录 | 过刊浏览 | 高级检索 |
喷雾干燥工艺对胶束态酪蛋白结构及抗氧化性的影响
曾秋兵1, 杨敏1,2*, 王裕成2, 秦娟娟2, 杨继涛2
1(甘肃农业大学 食品科学与工程学院,甘肃 兰州,730070)
2(甘肃农业大学 理学院,甘肃 兰州,730070)
Effect of spray-drying conditions on the structure and antioxidant activities of micellar casein
ZENG Qiubing1, YANG Min1,2*, WANG Yucheng2, QIN Juanjuan2, YANG Jitao2
1(College of Food Science and Engineering (Gansu Agricultural University),Lanzhou 730070,China)
2(College of Science (Gansu Agricultural University),Lanzhou 730070,China)
下载:  HTML   PDF (3044KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以脱脂牛乳为原料,采用超滤技术获得胶束态酪蛋白,研究进口温度130 ℃和150 ℃、雾化压力0.05 MPa和0.1 MPa喷雾干燥工艺下胶束态酪蛋白粉末的水分含量、粒径、堆积密度、表面形貌、溶解性、内源荧光特性以及抗氧化活性(还原力、Fe2+螯合力、DPPH和ABTS自由基清除活力),并以冷冻干燥样品为对照。结果显示,随着喷雾干燥温度和雾化压力的升高,胶束态酪蛋白粉末的水分含量显著降低(P<0.05),堆积密度显著增大(P<0.05),粒径在150 ℃-0.1 MPa条件下最大,为(2.16±0.29) μm;冻干胶束酪蛋白的粒径最小,为(1.31±0.02) μm,堆积密度最大,为(416.47±3.94) mg/mL,水分含量与130 ℃-0.1 MPa和150 ℃-0.05 MPa下喷干样品差异不显著(P>0.05)。随着喷干温度和压力的升高,胶束态酪蛋白的溶解性和内源荧光强度呈现下降趋势,但最大发射波长和表面形貌不变。冻干样品的溶解性在pH 7时为(87.63±0.35)%,与130 ℃-0.05 MPa下的喷干样品差异不显著(P>0.05)。就抗氧化活性而言,130 ℃喷干时胶束态酪蛋白具有较好的还原力和ABTS自由基清除活力,150 ℃喷干时胶束态酪蛋白的DPPH自由基清除能力较好。进口温度150 ℃和雾化压力 0.05 MPa工艺下胶束态酪蛋白的Fe2+螯合能力最强。研究结论可为胶束态酪蛋白产业化开发及干燥工艺选择提供参考依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾秋兵
杨敏
王裕成
秦娟娟
杨继涛
关键词:  胶束态酪蛋白  喷雾干燥  粒径  内源荧光  表面形貌  抗氧化性    
Abstract: In this study, cow skim milk was chosen as raw materials, and micellar casein was obtained by ultrafiltration and spray-dried under the temperature of 130 ℃ and 150 ℃ with a spray pressure of 0.05 MPa and 0.1 MPa, respectively. The following parameters, including moisture content, particle size, bulk density, topography, solubility, intrinsic fluorescence and antioxidant properties of micellar casein, were measured. Freeze-drying samples were used as the control group. The results showed that as spray-drying temperature and pressure increased, the moisture content decreased and bulk density increased significantly with the maximum particle size of (2.16±0.29) μm under the conditions of 150 ℃-0.1 MPa. The solubility of freeze-drying samples was (87.63±0.35)% at pH7,which was similar to the solubility of spray drying samples. The freeze-drying samples had a minimum particle size of (1.31±0.02) μm, and maximum bulk density of (416.47±3.94) mg/mL. And the moisture content was similar to those of samples under 130 ℃-0.1 MPa and 150 ℃-0.05 MPa spray-drying conditions. Moreover, the solubility and intrinsic fluorescence reduced when temperature and pressure increased. However, the maximum emission wavelength and micellar topography did not alter. The best reduce power was obtained with the spray-drying samples at 130 ℃ had and ABTS free radical scavenging activities were also good, while samples obtained at 150 ℃ had the best DPPH free radical scavenging activities. Furthermore, the spray-drying micellar casein at 150 ℃ and 0.05 MPa had the best Fe2+ chelating capacity. This study could provide references for the industrial development of micellar casein and the optimization of spray-drying parameters.
Key words:  micellar casein    spray-drying    particle size    intrinsic fluorescence    topography    antioxidant activity
收稿日期:  2019-10-15                出版日期:  2020-03-25      发布日期:  2020-04-24      期的出版日期:  2020-03-25
基金资助: 国家自然科学基金(31560430);甘肃农业大学伏羲杰出人才培养项目(Gaufx-02J02);甘肃农业大学青年导师扶持基金(GAU-QDFC-2018-01)
作者简介:  硕士研究生(杨敏教授为通讯作者,E-mail:yummy12@163.com)
引用本文:    
曾秋兵,杨敏,王裕成,等. 喷雾干燥工艺对胶束态酪蛋白结构及抗氧化性的影响[J]. 食品与发酵工业, 2020, 46(6): 140-147.
ZENG Qiubing,YANG Min,WANG Yucheng,et al. Effect of spray-drying conditions on the structure and antioxidant activities of micellar casein[J]. Food and Fermentation Industries, 2020, 46(6): 140-147.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.022555  或          http://sf1970.cnif.cn/CN/Y2020/V46/I6/140
[1] MCMAHON D J, OOMMEN B S. Supramolecular structure of the casein micelle[J]. Journal of Dairy Science, 2008, 91(5): 1 709-1 721.
[2] DE KRUIF C G, ZHULINA E B. κ-casein as a polyelectrolyte brush on the surface of casein micelles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 117(1): 151-159.
[3] DALGLEISH D G, CORREDIG M. The structure of the casein micelle of milk and its changes during processing[J]. Annual Review of Food Science and Technology, 2012, 3(1): 449-467.
[4] HOLT C, DE KRUIF C G, TUINIER R, et al. Substructure of bovine casein micelles by small-angle X-ray and neutron scattering[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 213(2-3): 275-284.
[5] YE A. Functional properties of milk protein concentrates: Emulsifying properties, adsorption and stability of emulsions[J]. International Dairy Journal, 2010, 21(1): 14-20.
[6] SALVATORE E, PIRISI A, CORREDIG M. Gelation properties of casein micelles during combined renneting and bacterial fermentation: Effect of concentration by ultrafiltration[J]. International Dairy Journal, 2011, 21(11): 848-856.
[7] 陈建行,刘鹭,孙颜君,等.酪蛋白胶束粉的陶瓷膜分离生产工艺[J].农业工程学报, 2013, 29(9):256-266.
[8] BELICIU C M, SAUER A, MORARU C I. The effect of commercial sterilization regimens on micellar casein concentrates[J]. Journal of Dairy Science, 2012, 95(10): 5 510-5 526.
[9] HURT E, ZULEWSKA J, NEWBOLD M, et al. Micellar casein concentrate production with a 3X, 3-stage, uniform transmembrane pressure ceramic membrane process at 50℃ 1[J]. Journal of Dairy Science, 2010, 93(12): 5 588-5 600.
[10] 陈建行,刘鹭,张书文,等. 乳蛋白浓缩物(MPC)的中试生产工艺研究[J]. 中国乳品工业, 2013, 41(10):11-14.
[11] 韩娜,杨敏,杨继涛,等.酪蛋白酶解物的分离及其抗氧化活性[J].食品工业科技, 2019, 40(9):166-170;229.
[12] TAVAF Z, TABATABAEI M, KHALAFI-NEZHAD A, et al. Evaluation of antibacterial, antibofilm and antioxidant activities of synthesized silver nanoparticles (AgNPs) and casein peptide fragments against Streptococcus mutans[J]. European Journal of Integrative Medicine, 2017, 12: 163-171.
[13] GU F L, KIM J M, HAYAT K, et al. Characteristics and antioxidant activity of ultrafiltrated Maillard reaction products from a casein-glucose model system[J]. Food Chemistry, 2009, 117(1): 48-54.
[14] GOULA A M, ADAMOPOULOS K G. Spray drying of tomato pulp in dehumidified air: II. The effect on powder properties[J].Journal of Food Engineering, 2004, 66(1): 35-42.
[15] CANO-CHAUCA M, STRINGHETA P C, RAMOS A M, et al. Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization[J]. Innovative Food Science and Emerging Technologies, 2005, 6(4): 420-428.
[16] YANG M, CUI N, FANG Y, et al. Influence of succinylation on the conformation of yak casein micelles[J]. Food Chemistry, 2015, 179: 246-252.
[17] WANG H X, YANG J T, YANG M, et al. Antioxidant activity of Maillard reaction products from a Yak casein-glucose model system[J]. International Dairy Journal, 2018, 91: 55-63.
[18] XIE Z J, HUANG J, XU X M, et al. Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate[J]. Food Chemistry, 2008, 111(2): 370-376.
[19] KONG B H, XIONG Y L L. Antioxidant activity of zein hydrolysates in a liposome system and the possible mode of action[J].Journal of Agricultural and Food Chemistry, 2006, 54(16): 6 059-6 068.
[20] RE R, PELLEGRINI N, PROTEGGENTE A, et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay[J].Free Radical Biology and Medicine, 1999, 26(9): 1 231-1 237.
[21] 王鹏杰,简澍瑜,王辰元,等.不同前处理条件对动态光散射检测酪蛋白胶束粒径的影响[J].农业工程学报, 2015, 31(14): 298-302.
[22] 苏东晓,廖森泰,张名位,等.喷雾干燥工艺条件对速溶龙眼粉理化特性的影响[J].中国农业科学, 2011, 44(18): 3 830-3 839.
[23] TAN S, EBRAHIMI A, LANGRISH T. Controlled release of caffeine from tablets of spray-dried casein gels[J]. Food Hydrocolloids, 2019, 88:13-20.
[24] ZHANG Ruihua, PANG Xiaoyang, LU Jing, et al. Effect of high intensity ultrasound pretreatment on functional and structural properties of micellar casein concentrates[J]. Ultrasonics Sonochemistry, 2018, 47:10-16.
[25] 闫忠心,靳义超.喷雾干燥温度对牦牛乳粉溶解特性的影响[J].食品科学, 2016, 37(7):23-26.
[26] LIU D S, ZHANG J, YANG T Y, et al. Effects of skim milk pre-acidification and retentate pH-restoration on spray-drying performance, physico-chemical and functional properties of milk protein concentrates[J]. Food Chemistry, 2019, 272: 539-548.
[27] KERENSA B, ALPHONS G J V, ROB J H, et al. Glycoforms of beta-lactoglobulin with improved thermostability and preserved structural packing[J]. Biotechnology and Bioengineering, 2004, 86(1): 78-87.
[28] MANEEPHAN K, MATTEO M, STEFANIA I, et al. Structural changes of soy proteins at the oil–water interface studied by fluorescence spectroscopy[J].Colloids and Surfaces B: Biointerfaces, 2012, 93: 41-48.
[29] JOSHI R, SOOD S, DOGRA P, et al. In vitro cytotoxicity, antimicrobial, and metal-chelating activity of triterpene saponins from tea seed grown in Kangra valley[J].Indian Journal of Medical Research, 2015, 22: 4 030-4 038.
[30] GARCíA-MORENO P J, BATISTA I, PIRES C, et al. Antioxidant activity of protein hydrolysates obtained from discarded Mediterranean fish species[J]. Food Research International, 2014, 65: 469-476.
[31] KUMARAN A, JOEL K R. Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus[J]. Food Chemistry, 2006, 97(1): 109-114.
[32] FAN L L, WANG Y, XIE P J, et al. Copigmentation effects of phenolics on color enhancement and stability of blackberry wine residue anthocyanins: Chromaticity, kinetics and structural simulation[J]. Food Chemistry, 2018, 275: 299-308.
[1] 余祥英, 陈晓纯, 李玉婷, 李琳. 陈皮挥发油组成分析及其单体的抗氧化性研究[J]. 食品与发酵工业, 2021, 47(9): 245-252.
[2] 姜甜, 陆文伟, 崔树茂, 张灏, 赵建新. 静电喷雾干燥微囊化乳双歧杆菌BL03[J]. 食品与发酵工业, 2021, 47(7): 27-33.
[3] 樊震宇, 韩昕苑, 余婷婷, 张龙, 王锡昌. 蓝点马鲛鱼分离蛋白抗冻剂的复配[J]. 食品与发酵工业, 2021, 47(5): 105-111.
[4] 陈珂, 刘丽莉, 郝威铭, 杨晓盼, 李媛媛. 喷雾干燥入口温度对蛋清蛋白流变和结构特性的影响[J]. 食品与发酵工业, 2021, 47(2): 15-21.
[5] 武芸, 王春林, 王丽朋, 张腊腊, 胡浩斌. 黑果枸杞多酚吸附分离特性及抗氧化性研究[J]. 食品与发酵工业, 2021, 47(2): 70-77.
[6] 张兆云, 周启萍, 巩起福, 赵保堂, 尚琪, 张志华, 杨富民. “陇藜1号”藜麦籽实清蛋白提取工艺优化及抗氧化性测定[J]. 食品与发酵工业, 2021, 47(2): 212-219.
[7] 周葵, 洪雁, 梁尚云, 张雅媛, 游向荣, 李明娟, 卫萍, 王颖. 富硒大米粉预糊化及其复配代餐粉的研制[J]. 食品与发酵工业, 2021, 47(1): 186-192.
[8] 王琳, 赵裴, 刘洋, 刘杨洁, 韩富亮. 干化处理对霞多丽葡萄酒质量的影响[J]. 食品与发酵工业, 2020, 46(7): 83-88.
[9] 范柳, 刘海宇, 赵良忠, 沈国祥, 邓雅欣, 谢春平, 吴江, 莫鑫. 不同制浆工艺对豆浆品质的影响[J]. 食品与发酵工业, 2020, 46(7): 148-154.
[10] 徐思宁, 刘红波, 唐志书, 宋忠兴, 孙静, 崔春利, 蔡兴航, 于金高, 刘世军, 孙晓春. 沙棘果浆微囊喷雾干燥制备工艺及其理化性质研究[J]. 食品与发酵工业, 2020, 46(6): 121-126.
[11] 赵天瑶, 王丽云, 姜宏伟, 康玉凡. 豆类种子及其芽苗菜的营养品质、功能性成分及抗氧化性研究[J]. 食品与发酵工业, 2020, 46(5): 83-90.
[12] 王惋, 侯俊财, 于彤, 姜瞻梅, 田波, 王玉堂, 焦月华, 刘飞. 具有抗氧化和抑菌能力的益生性乳酸菌筛选及鉴定[J]. 食品与发酵工业, 2020, 46(3): 43-49.
[13] 墙梦捷, 鲁晓翔. 艾叶精油微乳的表征及稳定性研究[J]. 食品与发酵工业, 2020, 46(23): 86-91.
[14] 焦旋, 高阳, 高振峰, 张新宪, 冯志宏, 张立新, 白宇皓. 压差预冷对油桃贮运品质及抗氧化性的影响[J]. 食品与发酵工业, 2020, 46(22): 173-179.
[15] 易灵, 彭群, 叶之壮, 陆洁毅, 王超, 段翰英. 微胶囊粒径对甜橙油中D-柠檬烯释放特性的影响[J]. 食品与发酵工业, 2020, 46(21): 90-97.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn