Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (2): 18-24    DOI: 10.13995/j.cnki.11-1802/ts.022600
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
宜宾产区浓香型白酒酿造生境中细菌的群落结构
翟磊1, 于学健1, 冯慧军1, 张彩文1, 周立光1, 邱声强2, 姚粟1*
1 (中国食品发酵工业研究院有限公司,中国工业微生物菌种保藏管理中心,北京,100015)
2 (四川省酒业集团有限责任公司川酒研究院,四川 成都,610041)
Study on bacterial community structure in the brewing habitats of strong flavour Chinese Baijiu from Yibin region
ZHAI Lei1, YU Xuejian1, FENG Huijun1, ZHANG Caiwen1, ZHOU Liguang1, QIU Shengqiang2, YAO Su1*
1 (China National Research Institute of Food and Fermentation Industries Co. Ltd., China Center of Industrial Culture Collection Beijing 100015, China)
2 (Si Chuan Liquor Group Co. Ltd. Si Chuan Liquor Research Institute, Chengdu 610041, China)
下载:  HTML   PDF (1555KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 该文利用高通量测序技术全面解析宜宾产区浓香型白酒酿造生境中的微生物菌群结构,并对窖泥、大曲、酒醅和黄水中的细菌种类和丰度进行对比分析。结果表明,从宜宾产区白酒酿造生境的26个样品中共注释到来自于201个属的1 493个OTUs,主要分布于拟杆菌门(Bacteroidete)、变形菌门(Proteobacteria)和厚壁菌门(Firmicutes),其中5个属来自于古菌域的广古菌门(Euryarchaeota)。窖泥样品中微生物菌种的多样性最高,主要以古菌、瘤胃球菌和乳酸菌为主;大曲的多样性次之,主要包括未鉴定到属水平的细菌,芽胞杆菌、乳酸菌和高温放线菌等;酒醅和黄水中的微生物多样性最低,其主要微生物类群以乳酸菌和瘤胃球菌为主。宜宾产区浓香型白酒酿造过程微生物群落结构呈现出从多种微生物共同作用到功能微生物主要发挥作用的趋势。该研究为探究浓香型白酒酿造过程中功能微生物,解析白酒酿造机理,提升白酒品质奠定了基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
翟磊
于学健
冯慧军
张彩文
周立光
邱声强
姚粟
关键词:  宜宾产区  浓香型白酒  酿造生境  细菌群落结构  功能微生物    
Abstract: Microbial communities of strong flavour Chinese Baijiu in the fermented habitats from Yibin region were comprehensively analyzed by high throughput sequencing. And the varieties and abundance of the bacteria from pit mud, daqu, fermented grains and yellow water were compared. The results indicated that a total of 1493 OTUs from 201 genera have been annotated in 26 samples collected from Baijiu fermented habitats of Yibin region, which were mainly distributed in phylum Bacteroidete, Proteobacteria and Firmicutes. Among which, 5 genera were from phylum Euryarchaeota of domain Archaea. The microbial diversity was the highest in the pit mud samples and dominant bacteria were Achaea, lactic acid bacteria and Rumencoccus sp. Daqu samples, with the second highest microbial diversity, mainly included bacteria that have not been identified to genus level, lactic acid bacteria, Bacillus sp. and Thermoactinomyces sp. The lowest microbial diversities were in fermented grains and yellow water samples, of which the main microbial groups were lactic acid bacteria and Rumencoccus sp. There is a trend from multiple microorganisms to functional microorganisms in the fermented habitats of strong flavour Chinese Baijiu from Yibin region. This study laid a foundation for exploring the functional microorganisms in the fermentation process, analyzing the fermentation mechanism and improving the quality of strong flavour Chinese Baijiu.
Key words:  Yibin region    strong flavour Chinese Baijiu    fermented habitats    bacterial community structure    functional microorganism
收稿日期:  2019-10-21                出版日期:  2020-01-25      发布日期:  2020-03-13      期的出版日期:  2020-01-25
基金资助: 中国轻工业浓香型白酒固态发酵重点实验室开放基金项目(2018JJ022)
作者简介:  博士,高级工程师(姚粟教授级高级工程师为通讯作者,E-mail:milly@china-cicc.org)。
引用本文:    
翟磊,于学健,冯慧军,等. 宜宾产区浓香型白酒酿造生境中细菌的群落结构[J]. 食品与发酵工业, 2020, 46(2): 18-24.
ZHAI Lei,YU Xuejian,FENG Huijun,et al. Study on bacterial community structure in the brewing habitats of strong flavour Chinese Baijiu from Yibin region[J]. Food and Fermentation Industries, 2020, 46(2): 18-24.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.022600  或          http://sf1970.cnif.cn/CN/Y2020/V46/I2/18
[1] 康文怀, 徐岩. 中国白酒风味分析及其影响机制的研究[J]. 北京工商大学学报:自然科学版, 2012, 30(3): 53-58.
[2] XU Y, SUN B, FAN G, et al. The brewing process and microbial diversity of strong flavour Chinese spirits: A review[J]. Journal of the Institute of Brewing, 2017, 123(1): 5-12.
[3] GB/T 10781.1—2006 浓香型白酒[S].北京:中国标准出版社, 2007.
[4] 王媚, 傅小红, 冯学愚, 等. 浓香型白酒发酵微生物多样性研究进展与技术创新[J]. 酿酒科技, 2014 (8): 85-88.
[5] 张宿义, 沈才洪, 许德富. 浓香型白酒的技术发展回顾[J]. 酿酒, 2009, 36 (1): 8-10.
[6] ZHANG L, ZHOU R, NIU M, et al. Difference of microbial community stressed in artificial pit muds for Luzhou-flavour liquor brewing revealed by multiphase culture-independent technology[J]. Journal of Applied Microbiology, 2015, 119(5): 1 345-1 356.
[7] SCHIRMER M, IJAZ U Z, D' AMORE R, et al. Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform[J]. Nucleic Acids Research, 2015, 43(6): e37.
[8] ALBANESE D, DONATI C. Strain profiling and epidemiology of bacterial species from metagenomic sequencing[J]. Nature Communications, 2017, 8(1): 2 260.
[9] GUO M, HOU C, BIAN M, et al. Characterization of microbial community profiles associated with quality of Chinese strong-flavour liquor through metagenomics[J]. Journal of Applied Microbiology, 2019, 127(3): 750-762.
[10] 李斌, 闫志鹏, 李慧星, 等. 基于高通量测序技术的浓香型和芝麻香型白酒酒曲细菌群落结构分析[J]. 中国酿造, 2018,37(8): 148-152.
[11] 邓杰, 卫春会, 罗惠波, 等. 基于高通量测序的浓香型白酒窖池古菌群落结构分析[J]. 现代食品科技, 2015,31(8): 205-210.
[12] ZHOU J, BRUNS M A, TIEDJE J M. DNA recovery from soils of diverse composition[J]. Appl Environ Microbiol, 1996, 62(2): 316-322.
[13] ZHANG X L, TIAN X Q, MA L Y, et al. Biodiversity of the symbiotic bacteria associated with toxic marine Dinoflagellate Alexandrium tamarense[J]. Journal of Biosciences and Medicines, 2015, 3(6): 23-28.
[14] BOLYEN E, RIDEOUT J R, DILLON M R. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nature Biotechnology, 2019, 37(8): 852–857.
[15] CALLAHAN B J, MCMURDIE P J, ROSEN M J, et al. DADA2: High-resolution sample inference from Illumina amplicon data[J]. Nature Methods, 2016,13(7):581.
[16] LETUNIC I, BORK P. Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees[J]. Nucleic Acids Research, 2016,44(W1):W242-W245.
[17] GINESTET C. ggplot2: Elegant graphics for data analysis[J]. Journal of the Royal Statistical Society, 2011, 174(1):245-246.
[18] CHI C M, CHUNG J W, KOZYRAKIS C, et al. STAMP: Stanford Transactional Applications for Multi-Processing[C]//2008 IEEE International Symposium on workload Characterization.IEEE,2008:35-36.
[19] 冯慧军, 翟磊, 程坤, 等. 高温放线菌属研究进展[J]. 食品与发酵工业, 2017,43(11):257-261.
[20] YAO S, LIU Y, ZHANG M, et al. Thermoactinomyces daqus sp. nov. a thermophilic bacterium isolated from high-temperature Daqu[J]. Int J Syst Evol Microbiol, 2014, 64(1):206-210.
[21] 王明跃, 张文学, 王海英, 等. 不同窖龄窖泥古菌的系统发育多样性分析[J]. 应用与环境生物学报, 2012, 18(6):1 043-1 048.
[22] 邓杰, 卫春会, 边名鸿, 等. 浓香型白酒不同窖龄窖池窖泥中古菌群落结构分析[J]. 食品科学, 2017,38(8):45-50.
[23] 邢敏钰, 杜海, 徐岩. 芝麻香型白酒发酵过程中乳酸菌多样性及其演替规律[J]. 微生物学通报, 2018, 45(1):19-28.
[1] 方颂平, 刘露, 吴文睿, 蒲顺昌, 邢爽, 刘飞翔, 刘开放. 小米对浓香型白酒酿造及风格特征的影响[J]. 食品与发酵工业, 2021, 47(8): 122-127.
[2] 胡雪, 李锦松, 唐永清, 张良, 钱宇, 赵金松. 基于GC-MS结合化学计量学的浓香型白酒分类方法[J]. 食品与发酵工业, 2021, 47(8): 212-217.
[3] 张倩, 谢正敏, 安明哲, 魏金萍, 叶华夏, 黄箭. 稳定碳同位素判别浓香型白酒的品牌[J]. 食品与发酵工业, 2021, 47(6): 234-240.
[4] 李正涛, 倪永培, 项兴本, 曹荣升, 赵金松. 迎驾贡酒洞藏过程中物质变化研究[J]. 食品与发酵工业, 2021, 47(2): 114-120.
[5] 勾文君, 方芳. 窖泥梭菌扰动减控白酒发酵过程正丁醇生成[J]. 食品与发酵工业, 2021, 47(15): 43-49.
[6] 赵改名, 李珊珊, 崔文明, 祝超智, 王晗, 银峰, 焦阳阳, 李佳麒, 韩明山. 不同来源腊肉中细菌菌群结构与风味相关性分析[J]. 食品与发酵工业, 2021, 47(13): 246-253.
[7] 张晓宇, 郭子贤, 吕育财, 任立伟, 龚大春, 杨潇, 陈萍, 郭金玲. 浓香型白酒生态系统中己酸菌研究进展[J]. 食品与发酵工业, 2021, 47(12): 302-308.
[8] 梁清文, 周朝晖, 李铁桥, 卢丽玲, 刘佳乐, 方芳. 蚝油原料细菌群落结构分析与淀粉利用菌株的识别[J]. 食品与发酵工业, 2021, 47(10): 37-42.
[9] 石佳佳, 齐天翊, 张萌, 陈淋霞, 张笛, 包智华. 自制酵素中乳酸菌群动态分析及对重金属的吸附积累特性[J]. 食品与发酵工业, 2021, 47(1): 14-20.
[10] 游玲, 谭壹, 隆清扬, 陈宏, 周荣清, 赵东. 浓香型白酒糟醅中酵母Geotrichum sp.的固态发酵特性[J]. 食品与发酵工业, 2021, 47(1): 55-61.
[11] 刘芳, 杨康卓, 张建敏, 何张兰, 彭志云, 郑佳. 基于电子鼻和气质联用技术的浓香型白酒分类[J]. 食品与发酵工业, 2020, 46(2): 73-78.
[12] 卢萌萌, 任聪, 聂尧, 徐岩. 白酒酿造窖泥未培养微生物菌群的可培养化策略[J]. 食品与发酵工业, 2020, 46(19): 9-16.
[13] 汪诗欣, 开朗, 杨静怡, 纪星名, 钱涵祺, 徐岩, 杜海. 浓香型白酒中短链脂肪酸及其乙酯对人体的影响[J]. 食品与发酵工业, 2020, 46(16): 257-263.
[14] 张馨元, 徐岩, 王栋, 陈双. 优质低度与高度浓香型白酒挥发性风味组分差异特征解析[J]. 食品与发酵工业, 2020, 46(15): 66-71.
[15] 袁华伟, 王连, 王鑫, 郑佳, 安明哲, 乔宗伟, 梁露, 李治中. 浓香型白酒酒尾回收利用蒸馏条件的研究[J]. 食品与发酵工业, 2020, 46(13): 133-139.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn