Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (8): 54-62    DOI: 10.13995/j.cnki.11-1802/ts.022743
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
等离子体处理对复合蛋白基成膜溶液性能的影响
高文婧1, 雷桥1,2,3*, 郄梓含1, 曹庆龙1
1 (上海海洋大学 食品学院,上海,201306)
2 (上海水产品加工及贮藏工程技术研究中心,上海,201306)
3 (农业部水产品贮藏保鲜质量安全风险评估实验室(上海),上海,201306)
Effects of Plasma treatment on properties of protein-based film-forming solutions
GAO Wenjing1, LEI Qiao1,2,3*, QIE Zihan1, CAO Qinglong1
1 (College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China)
2 (Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China)
3 (Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation(Shanghai), Ministry of Agriculture, Shanghai 201306, China)
下载:  HTML   PDF (1700KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 该研究旨在探索不同时长等离子体(Plasma)处理对复合蛋白基成膜溶液性能的影响。为此,采用功率为30 W的大气压Plasma对WPI-NaCas-GLY复合成膜溶液分别进行0、5、10、15、20、30、40和60 min的低温等离子体处理,研究了处理期间成膜溶液的色度、pH值、粒度、表面张力、发泡性能和乳化能力的变化以及制得薄膜的机械性能、光学性能和阻隔性能的变化。实验结果表明,随着处理时间的延长,由于活性氧及氮物质的形成及作用,成膜溶液黄度提高,pH值先增后降,蛋白质聚合使得溶液中蛋白质大分子颗粒粒径以每5 min提高1倍的速率增长,蛋白质羰基增加1倍,游离巯基减少一半,基质表面张力降低至约35 mN/m,发泡能力降低10%,泡沫稳定性显著提升(P<0.05),由74.99 %增至94.60 %,乳化性能最高达到0.12 m2/g。所得复合蛋白膜抗拉强度增大了0.5 MPa,透光率有所下降,氧气透过率降低至0.53 cc/(m2·d),水蒸气透过系数降低约40%。由此推论,Plasma的适时处理能够有效改善蛋白基成膜溶液疏水性、发泡能力以及乳化性能,并得到较理想的复合蛋白膜。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高文婧
雷桥
郄梓含
曹庆龙
关键词:  等离子体(Plasma)处理  蛋白基成膜溶液  表面张力  乳化性能  薄膜特性    
Abstract: The present study was designed to explore the effects of Plasma treatment on properties of protein-based film-forming solutions. For this purpose, the WPI-NaCas-GLY composite film-forming solution was treated with atmospheric pressure cold Plasma of 30 W at different temperatures for 0, 5, 10, 15, 20, 30, 40 and 60 min respectively. Changes of chromaticity, pH, particle size, surface tension, foaming properties and emulsifying capacity of the film forming solution during the treatment were observed. The results showed that the yellowness of the film forming solution rose while the pH value waved to decline. Protein polymerization increased the size of protein macromolecule particles in solution at a rate of doubling every 5 minutes which due to the reaction between reactive oxygen species and nitrogen species induced by plasma. The protein carbonyl groups and free SH groups increased and decreased one time respectively. Moreover, the surface tension of the matrix reduced to 35 mN/m and the foaming capacity was reduced by 10%. Meanwhile, the foam stability was significantly improved (P<0.05) from 74.99% to 94.60% and the emulsification capacity reached 0.12 m2/g. Furthermore, the resulting tensile strength of the composite protein film was increased by 0.5 MPa, light transmittance decreased, the oxygen transmission rate was reduced to 0.53 cc/(m2·d) and the water vapor transmission coefficient was reduced by 40%. It was inferred that the timely Plasma treatment could effectively improve the hydrophobicity, foaming ability, and emulsification properties of protein-based film-forming solution and got the ideal composite protein film.
Key words:  Plasma treatment    protein-based film forming solution    surface tension    emulsifiability    film characteristics
收稿日期:  2019-12-31                出版日期:  2020-04-25      发布日期:  2020-05-20      期的出版日期:  2020-04-25
基金资助: 上海市教育委员会产学研项目(15cyx69)
作者简介:  硕士研究生(雷桥副教授为通讯作者,E-mail:qlie@shou.edu.cn)
引用本文:    
高文婧,雷桥,郄梓含,等. 等离子体处理对复合蛋白基成膜溶液性能的影响[J]. 食品与发酵工业, 2020, 46(8): 54-62.
GAO Wenjing,LEI Qiao,QIE Zihan,et al. Effects of Plasma treatment on properties of protein-based film-forming solutions[J]. Food and Fermentation Industries, 2020, 46(8): 54-62.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.022743  或          http://sf1970.cnif.cn/CN/Y2020/V46/I8/54
[1] CHEN G Y, LEI Q. Research on preparation and properties of edible composite protein films[J]. Applied Mechanics and Materials, 2011, 87:213-222.
[2] 张玉亭, 雷桥, 包建强, 等. 乳清蛋白抗菌薄膜中山梨酸钾的扩散性研究[J]. 食品工业科技, 2015, 36(13): 262-265.
[3] JIANG S J, ZHANG X, MA Y, et al. Characterization of whey protein-carboxymethylated chitosan composite films with and without transglutaminase treatment[J]. Carbohydrate Polymers, 2016, 153: 153-159.
[4] 寻倩男, 雷桥, 包建强, 等. 明胶-酪蛋白酸钠可食性膜的包装性能研究[J]. 包装工程, 2013(15): 40-45.
[5] TONYALI B, CIKRIKCI S, OZTOP M H. Physicochemical and microstructural characterization of gum tragacanth added whey protein based films[J]. Food Research International, 2018, 105:1-9.
[6] 种晓, 雷桥, 郄梓含. 静态超高压处理对抗菌复合蛋白薄膜的改性研究[J]. 食品工业科技, 2018, 39(22): 56-61;68.
[7] ATEFEH SHARIFIAN, NAFISEH SOLTANIZADEH, ROUZBEH ABBASZADEH. Effects of dielectric barrier discharge plasma on the physicochemical and functional properties of myofibrillar proteins[J]. Innovative Food Science & Emerging Technologies, 2019, 54: 1-8.
[8] TAKAI E, KITAMURA T, KUWABARA J, et al. Chemical modification of amino acids by atmospheric-pressure cold plasma in aqueous solution[J]. Journal of Physics D: Applied Physics, 2014, 47(28): 285 403.
[9] ROMANI VIVIANE PATRÍCIA, BRADLEY O, PINTO C M, et al. Improvement of fish protein films properties for food packaging through glow discharge plasma application[J]. Food Hydrocolloids, 2018, 87: 970-976.
[10] GEZER P G, BRODSKY S, HSIAO A, et al. Modification of the hydrophilic/hydrophobic characteristic of zein film surfaces by contact with oxygen Plasma treated PDMS and oleic acid content[J]. Colloids and Surfaces B: Biointerfaces, 2015, 135: 433-440.
[11] SEGAT A, MISRA N, CULLEN P, et al. Atmospheric pressure cold plasma (ACP) treatment of whey protein isolate model solution[J]. Innovative Food Science & Emerging Technologies, 2015, 29: 247-254.
[12] CHEN G Y, LEI Q. Research on preparation and properties of edible composite protein films[J]. Applied Mechanics and Manufacturing Technology, 2011, 87: 213-222.
[13] 陈丹丹, 张晨夕, 徐禄. 马尔文MS3000粒度仪在碳酸钙粒径分析中的应用[J]. 黑龙江造纸, 2018, 46(1): 32-34.
[14] LEVINE R L, GARLAND D, OLIVER C N, et al. Determination of carbonyl content in oxidatively modified proteins[J]. Methods in Enzymology, 1990, 186: 464-478.
[15] BEVERIDGE T, TOMA S J, NAKAI S. Determination of SH-and SS-groups in some food proteins using Ellman's reagent[J]. Journal of Food Science, 2006, 39(1): 49-51.
[16] 朱力杰, 张馨心, 刘秀英, 等. 界面扩张流变学性质在食品组分相互作用中的研究进展[J]. 食品工业科技, 2017, 38(11): 363-368.
[17] ONODENALORE A, FEREIDOONSHAHIDI. Protein Dispersions and Hydrolysates from Shark (Isurus oxyrinchus)[J]. Journal of Aquatic Food Product Technology, 1996, 5(4): 43-59.
[18] THIANSILAKUL Y, BENJAKUL S, SHAHIDI F. Compositions, functional properties and antioxidative activity of protein hydrolysates prepared from round scad (Decapterus maruadsi)[J]. Food Chemistry, 2007, 103(4): 1 385-1 394.
[19] SUKYAI P, ANONGJANYA P, BUNYAHWUTHAKUL N, et al. Effect of cellulose nanocrystals from sugarcane bagasse on whey protein isolate-based films[J]. Food Research International, 2018, 107: 528-535.
[20] ASTM D1003-61, 1997. Standard Test Method for Haze and Luminous Transmittance of Transparent Plastics[S].
[21] ASTM E-398, 2003. Standard Test Method for Water Vapor Transmission Rate of Sheet Materials Using Dynamic Relative Humidity Measurement[S].
[22] CARVALHO R A D, GROSSO C R F. Characterization of gelatin based films modified with transglutaminase, glyoxal and formaldehyde[J]. Food Hydrocolloids, 2004, 18(5): 717-726.
[23] GOUNGA M E, XU S Y, WANG Z. Whey protein isolate-based edible films as affected by protein concentration, glycerol ratio and pullulan addition in film formation[J]. Journal of Food Engineering, 2007, 83(4): 521-530.
[24] MISRA N N, ZUIZINA D, CULLEN P J, et al. Characterization of a novel atmospheric air cold plasma system for treatment of packaged biomaterials[J]. Transactions of the ASABE, 2013, 56(3): 1 011-1 016.
[25] LAROUSSI M, LEIPOLD F. Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure[J]. International Journal of Mass Spectrometry, 2003, 233(1): 81-86.
[26] MISRA N N, KAUR S, TIWARI B K, et al. Atmospheric pressure cold plasma (ACP) treatment of wheat flour[J]. Food Hydrocolloids, 2015, 44:115-121.
[27] OEHMIGEN K, HÄHNEL M, BRANDENBURG R, et al. The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids[J]. Plasma Processes & Polymers, 2010, 7(3-4): 250-257.
[28] TRAYLOR M J, PAVLOVICH M J, KARIM S, et al. Long-term antibacterial efficacy of air plasma-activated water[J]. Journal of Physics D: Applied Physics, 2011, 44(47): 472 001.
[29] CUI X, XIONG Y L, KONG B, et al. Hydroxyl radical-stressed whey protein isolate: Chemical and structural properties[J]. Food and Bioprocess Technology, 2012, 5(6): 2 454-2 461.
[30] WEI X F, LIU H Z. Relationship between foaming properties and solution properties of protein/nonionic surfactant mixtures[J]. Journal of Surfactants and Detergents, 2012, 3(4):491-495.
[31] ZHANG T, XUE Y, LI Z, et al. Effects of ozone-induced oxidation on the physicochemical properties of myofibrillar proteins recovered from bighead carp (Hypophthalmichthys nobilis)[J]. Food and Bioprocess Technology, 2015, 8(1): 181-190.
[32] FOEGEDING E A, DAVIS J P. Food protein functionality: A comprehensive approach[J]. Food Hydrocolloids, 2011, 25(8): 1 853-1 864.
[33] KIM H J, YONG H I, PARK S, et al. Effects of dielectric barrier discharge plasma on pathogen inactivation and the physicochemical and sensory characteristics of pork loin[J]. Current Applied Physics, 2013, 13(7): 1 420-1 425.
[34] SURWSKY B,BUBLER S,SCHLÜTER O K.Cold Plasma in Food and Agriculture[M].Salt Lake Clty:Academic Press,2016:179-203.
[35] VOZIYAN P A, METZ T O, BAYNES J W, et al. A post-amadori inhibitor pyridoxamine also inhibits chemical modification of proteins by scavenging carbonyl intermediates of carbohydrate and lipid degradation[J]. Journal of Biological Chemistry, 2002, 277(5): 3 397-3 403.
[36] ROMANI, VIVIANE PATRÍCIA OLSEN, PINTO COLLARES B, et al. Plasma technology as a tool to decrease the sensitivity to water of fish protein films for food packaging[J]. Food Hydrocolloids, 2019, 94: 210-216.
[37] MOOSAVI M H, KHANI M R, SHOKRI B, et al. Modifications of protein-based films using cold plasma[J]. International Journal of Biological Macromolecules, 2019, 142: 769-777.
[1] 段钢,Peter Birschbach,Jay Shetty. 新型细菌磷脂酶改性蛋黄卵磷脂[J]. 食品与发酵工业, 2004, 30(8): 9-.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn