Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (8): 111-117    DOI: 10.13995/j.cnki.11-1802/ts.023006
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
基于可见光/近红外高光谱技术的窖泥总酸的分布
朱敏1, 孙婷2, 白直真2, 罗惠波1, 田建平2, 黄丹1*
1 (四川轻化工大学 生物工程学院,四川 宜宾,644000)
2 (四川轻化工大学 机械工程学院,四川 宜宾,644000)
Distribution of total acid in pit mud based on VIS/NIR hyperspectral technology
ZHU Min1, SUN Ting2, BAI Zhizhen2, LUO Huibo1, TIAN Jianping2, HUANG Dan1*
1 (College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin 644000, China)
2 (College of Mechanical Engineering, Sichuan University of Science and Engineering, Yibin 644000, China)
下载:  HTML   PDF (4619KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于近红外(near-infrared,NIR)以及可见光(visible,VIS)高光谱技术快速评估窖泥总酸的分布。化学计量法结合计算机技术分析窖泥在近红外以及可见光波段下的高光谱数据,结合总酸实测值建立偏最小二乘回归、最小二乘支持向量机2种预测模型。根据模型的表现性能,最优模型为可见光区域下的SNV-SPA-SVM模型,训练集的决定系数R2cal为0.998 5,均方根误差为0.004 9 g/kg,测试集的决定系数R2pre为0.999 1,均方根误差为0.003 8 g/kg,并计算得到不同窖龄、不同层次窖泥总酸度的可视化分布图。结果表明,将高光谱技术应用于窖泥总酸的快速无损检测是可行的,此技术帮助白酒企业快速发现问题,及时调整工艺,防止窖泥酸化和老化现象的发生,同时为中国白酒行业传统技术的转型升级以及智能化在线实时监控窖泥质量提供了有力的技术支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱敏
孙婷
白直真
罗惠波
田建平
黄丹
关键词:  VIS/NIR高光谱技术  窖泥  总酸  快速无损检测  可视化    
Abstract: The total acid distribution in pit mud was rapidly assessed using visible (VIS)/near-infrared (NIR) hyperspectral technology. The hyperspectral data of pit mud in the near-infrared and visible wavebands were analyzed by stoichiometry combined with computer technology. Two prediction models, the partial least squares regression (PLSR) and a least squares-support vector machine (LS-SVM) were constructed based on these measurements. The model performances indicated that the optimal model was the Standard Normal Variable Correction-Successive Projection Algorithm-SVM (SNV-SPA-SVM) in the visible region. The coefficient of determination R2cal of the calibration set was 0.998 5, root mean square error of calibration (RMSEC) was 0.004 9 g/kg, and the coefficient of the determination R2pre of the prediction set was 0.999 1. Furthermore, the root mean square error of prediction (RMSEP) was 0.003 8 g/kg and a visual distribution map of the total acid in pit mud was obtained. The results showed that it was feasible to employ hyperspectral technology for rapid and non-destructive detection of the total acid in pit mud, enabling baijiu enterprises to identify problems quickly, adjust processes in a timely manner, prevent pit mud acidification and aging, as well as provide strong technical support for the transformation and upgrading of traditional technology in the Chinese baijiu industry and intelligent online real-time monitoring of pit mud quality.
Key words:  VIS/NIR hyperspectral technology    pit mud    total acid    rapid and non-destructive detection    visualization
收稿日期:  2019-12-07                出版日期:  2020-04-25      发布日期:  2020-05-20      期的出版日期:  2020-04-25
基金资助: 四川省科技厅重点研发计划(重大科技专项)项目(2018GZ0112);四川轻化工大学研究生创新基金资助项目(Y2018069)
作者简介:  硕士研究生(黄丹教授为通讯作者,E-mail:632348827@qq.com)
引用本文:    
朱敏,孙婷,白直真,等. 基于可见光/近红外高光谱技术的窖泥总酸的分布[J]. 食品与发酵工业, 2020, 46(8): 111-117.
ZHU Min,SUN Ting,BAI Zhizhen,et al. Distribution of total acid in pit mud based on VIS/NIR hyperspectral technology[J]. Food and Fermentation Industries, 2020, 46(8): 111-117.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.023006  或          http://sf1970.cnif.cn/CN/Y2020/V46/I8/111
[1] ZHAO Yuping, ZHENG Xiangping,SONG Pu, et al. Characterization of volatiles in the six most well-known distilled spirits[J]. Journal of the American Society of Brewing Chemists, 2013, 71(3):161-169.
[2] 胡晓龙. 浓香型白酒窖泥中梭菌群落多样性与窖泥质量关联性研究[D].无锡:江南大学,2015.
[3] 赵东,郑佳,彭志云,等. 五粮浓香型发酵糟醅与窖泥的相关性研究[J]. 食品与发酵工业, 2019,45(6): 1-7.
[4] WANG Xueshan, DU Hai, XU Yan. Source tracking of prokaryotic communities in fermented grain of Chinese strong-flavor liquor[J]. International Journal of Food Microbiology, 2017, 244: 27-35.
[5] 章发盛,张学英. 预防酿酒窖泥老化的研究[J]. 酿酒, 2010, 37(6):45-46.
[6] HEGE E K,O'CONNELL D,JOHNDON W, et al. Hyperspectral imaging for astronomy and space surveillance in imaging Spectrometry IX[J]. International Society for Optics and Photonics,2004,5 159:380-391.
[7] EDELMAN G J,GASTON E,LEEOWEN G V T. Hyperspectral imaging for non-contact analysis of forensic traces[J]. Forensic Science International, 2012, 223(1-3): 28-39.
[8] MALKOFF D B, OLIVER W R. Hyperspectral imaging applied to forensic medicine[J]. Proceedings of Spie-the International Society for Optical Engineering, 2000, 3 920: 108-116.
[9] KUULA J, PÖLÖNENI H,PUUPPONEN H H, et al. Using VIS/NIR and IR spectral cameras for detecting and separating crime scene details[J]. Proceedings of Spie-the International Society for Optical Engineering, 2012, 8 359: 13.
[10] SCHULER R L,KISH P E,PLESE C A.Preliminary observations on the ability of hyperspectral imaging to provide detection and visualization of bloodstain patterns on black fabrics[J]. Journal of Forensic Sciences, 2015, 57(6): 1 562-1 569.
[11] FISCHER C,KAKOULLI I. Multispectral and hyperspectral imaging technologies in conservation: Current research and potential applications[J]. Studies in Conservation, 2006, 51(Sup 1): 3-16.
[12] LIANG Haida. Advances in multispectral and hyperspectral imaging for archaeology and art conservation[J]. Applied Physics A, 2012, 106(2): 309-323.
[13] AFROMOWITZ M A, CALLIS J B,HEIMBACH D M, et al. Multispectral imaging of burn wounds: A new clinical instrument for evaluating burn depth[J].IEEE transactions on bio-medical engineering, 1988, 35(10): 842-850.
[14] CARRASCO O,GOMEZ R B,CHAINANI A, et al. Hyperspectral imaging applied to medical diagnoses and food safety[J]. Proceedings of Spie-the International Society for Optical Engineering, 2003, 5 097: 215-221.
[15] ADAM E,MUTANGA O,RUGEGE D. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review[J]. Wetlands Ecology & Management, 2010, 18(3): 281-296.
[16] GOVENDER M,CHETTY K,BULCOCK H. A review of hyperspectral remote sensing and its application in vegetation and water resource studies[J]. Water SA, 2009, 33(2):141-145.
[17] REN J,ZABALZA J,MARSHALL S, et al. Effective feature extraction and data reduction in remote sensing using hyperspectral imaging[J]. IEEE Signal Processing Magazine, 2014, 31(4): 149-154.
[18] ZHU Yaodi,ZOU Xiaobo,SHEN Tingting, et al. Determination of total acid content and moisture content during solid-state fermentation processes using hyperspectral imaging[J]. Journal of Food Engineering, 2016, 174: 75-84.
[19] MUNERA S,BESADA C,ALEIXOS N, et al. Non-destructive assessment of the internal quality of intact persimmon using colour and VIS/NIR hyperspectral imaging[J]. LWT - Food Science and Technology, 2017, 77: 241-248.
[20] LING Yan,XIONG Chuanwu,HAO Qu, et al. Non-destructive determination and visualisation of insoluble and soluble dietary fibre contents in fresh-cut celeries during storage periods using hyperspectral imaging technique[J]. Food Chemistry, 2017, 228: 249-256.
[21] FERREIRA D S,GALÃO O F,PALLONE J A L, et al. Comparison and application of near-infrared (NIR) and mid-infrared (MIR) spectroscopy for determination of quality parameters in soybean samples[J]. Food Control, 2014, 35(1): 227-232.
[22] HE Hongju, WU Di, SUN Dawen. Rapid and non-destructive determination of drip loss and pH distribution in farmed Atlantic salmon (Salmo salar) fillets using visible and near-infrared (Vis-NIR) hyperspectral imaging[J]. Food Chemistry, 2014, 156:394-401.
[1] 赵海萍, 南丽娟, 雒雪丽, 杨伟霞, 韩雍, 李忠宏. Ni/Co层状氢氧化物模拟氧化物酶可视化检测海产品中Hg2+[J]. 食品与发酵工业, 2021, 47(8): 204-211.
[2] 姜洪喆, 蒋雪松, 杨一, 胡逸磊, 陈青, 施明宏, 周宏平. 肉类掺杂掺假的高光谱成像检测研究进展[J]. 食品与发酵工业, 2021, 47(6): 300-305.
[3] 戴京京, 吕奎, 史仲平. BioJN发酵技术服务系统PC端的设计、开发及应用[J]. 食品与发酵工业, 2021, 47(3): 150-156.
[4] 任雪, 魏晓庆, 韩雨辰, 李洋, 肖冬光. 无窖泥发酵生产浓香型白酒[J]. 食品与发酵工业, 2020, 46(7): 105-109.
[5] 王琪, 李一关, 许长山, 祝刚强, 陈建新. 窖泥中降乳增己菌群的驯化及其在白酒发酵中的应用[J]. 食品与发酵工业, 2020, 46(24): 167-174.
[6] 卢君, 唐平, 山其木格, 王丽, 王凡, 孟天毅, 梁青松, 张乐, 李长文. 不同封窖方式对酱香白酒基础酿造的影响[J]. 食品与发酵工业, 2020, 46(2): 203-207.
[7] 卢萌萌, 任聪, 聂尧, 徐岩. 白酒酿造窖泥未培养微生物菌群的可培养化策略[J]. 食品与发酵工业, 2020, 46(19): 9-16.
[8] 孙婷, 胡新军, 田建平, 王开铸, 黄丹, 彭兴辉. 基于高光谱成像技术的大曲酸度值预测及其可视化[J]. 食品与发酵工业, 2020, 46(17): 226-231.
[9] 汪诗欣, 开朗, 杨静怡, 纪星名, 钱涵祺, 徐岩, 杜海. 浓香型白酒中短链脂肪酸及其乙酯对人体的影响[J]. 食品与发酵工业, 2020, 46(16): 257-263.
[10] 李长江, 李晴, 张莉艳, 郑玉船, 潘乐, 柯仲成, 李博文. 基于“开-闭”环的铁离子探针的合成及性能研究[J]. 食品与发酵工业, 2020, 46(13): 107-113.
[11] 胡晓龙, 王康丽, 余苗, 田瑞杰, 范海报, 孙继祥, 张军, 杨旭, 马歌丽, 魏涛. 浓香型窖泥原核微生物群落多样性及其在窖池中的空间异质性[J]. 食品与发酵工业, 2020, 46(11): 77-84.
[12] 郑佳, 杨康卓, 张建敏, 刘芳, 何张兰, 彭志云, 赵东. 浓香型白酒窖泥香气成分的空间分布规律[J]. 食品与发酵工业, 2020, 46(1): 11-15.
[13] 赵东, 郑佳, 彭志云, 杨康卓, 张建敏, 刘芳. 五粮浓香型发酵糟醅与窖泥的相关性研究[J]. 食品与发酵工业, 2019, 45(6): 1-7.
[14] 刘倩倩, 李俊薇, 曹润洁, 张会敏, 何宏魁, 李安军, 张治洲. 耐酸乳酸杆菌物种特异性引物设计及其在古井贡酒窖泥酒醅质量评价中的初步应用[J]. 食品与发酵工业, 2019, 45(6): 16-22.
[15] 王艳丽, 孟雅静, 何宏魁, 张会敏, 刘国英, 王录, 刘露, 李静心. 不同品质浓香型窖泥理化因子与细菌总量的相关性[J]. 食品与发酵工业, 2019, 45(3): 89-94.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn