Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (6): 1-7    DOI: 10.13995/j.cnki.11-1802/ts.023125
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
基于转录组学的酿酒酵母耐酸机制解析
田甜甜1,2,3, 孙军勇1,2,3, 蔡国林1,2,3, 杨华1,2,3, 吴殿辉1,2,3*, 陆健1,2,3*
1(工业生物技术教育部重点实验室(江南大学),江苏 无锡,214122)
2(粮食发酵工艺与技术国家工程实验室(江南大学),江苏 无锡,214122)
3(江南大学 生物工程学院,江苏 无锡,214122)
Transcriptomic profiling reveals the acid-tolerance mechanism of Saccharomyces cerevisiae
TIAN Tiantian1,2,3, SUN Junyong1,2,3, CAI Guolin1,2,3, YANG Hua1,2,3, WU Dianhui1,2,3*, LU Jian1,2,3*
1 (Key Laboratory of Industrial Biotechnology, Ministry of Education (Jiangnan University), Wuxi 214122, China)
2 (National Engineering Laboratory for Cereal Fermentation Technology (Jiangnan University), Wuxi 214122, China)
3 (School of Biotechnology, Jiangnan University, Wuxi 214122, China)
下载:  HTML   PDF (1696KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 酿酒酵母的耐酸特性在果酒生产中至关重要,但目前其应对酸胁迫的生物学机制仍不清楚。该研究以2株酿酒酵母(ET008-c54和ET008)为研究对象,分别提取总RNA后进行转录组测序分析,并考察不同pH条件下2菌株的细胞活力及利用不同的分析方法对ET008-c54发酵性能参数(菌体浓度、葡萄糖含量、生物量、乙酸含量、乙醇含量、甘油含量、麦角甾醇含量和H+-ATPase活性)进行测定。转录组学结果表明,688个差异表达基因中,其中364个基因转录水平上调,324个基因转录水平下调。差异表达基因的GO富集和KEGG通路富集表明,这些基因主要涉及细胞膜的组成及生理功能、麦角甾醇合成、亚铁吸收等多条代谢途径。通过对差异表达基因的进一步分析,最终确定了8个与耐酸性有关的重要基因。另外,ET008-c54在细胞活力、生长速率和代谢产物等方面表现出良好的发酵性能。ET008-c54具有很强的耐酸性,为高酸度水果酒的酿造提供了广阔的前景。这些发现为酿酒酵母的的遗传改良提供了方向,同时为果酒的高效发酵提供了重要的理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田甜甜
孙军勇
蔡国林
杨华
吴殿辉
陆健
关键词:  酿酒酵母  转录组学  耐酸性  细胞活性  代谢产物    
Abstract: Acid tolerance of Saccharomyces cerevisiae is critical to many industrial processes including fruit wine. However, the biological mechanism that causes yeast to adapt to low pH stress is still unclear and remains to be explored. The total RNA was extracted and transcriptomic analysis was performed to investigate the acid-tolerance mechanism of two wine yeasts (ET008-c54 and ET008) at low pH. The cell activity of these two strains were compared at different pH. Different analytical methods were used to measure the fermentation performance parameters of ET008-c54, including OD600, glucose, biomass, acetic acid, ethanol, glycerol, ergosterol and H+-ATPase activity. Based on the transcriptomic results, 688 differentially expressed genes (DEGs) comprising 364 up-regulated genes and 324 down-regulated genes were identified. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of DEGs indicated that these genes were mainly involved in important biological metabolisms, such as cell membrane composition and physiological functions, ergosterol synthesis and ferrous iron uptake. Eight genes in ET008-c54 were identified as the important genes for acid tolerance. Furthermore, ET008-c54 exhibited outstanding performances in cell activity, growth rate, metabolites, ergosterol and H+-ATPase activity. These results could potentially offer better targets for genetic improvement of wine yeast and efficient fermentation process.
Key words:  Saccharomyces cerevisiae    transcriptomic    acid-tolerance    cell activity    metabolite
收稿日期:  2019-12-17                出版日期:  2020-03-25      发布日期:  2020-04-24      期的出版日期:  2020-03-25
基金资助: 国家自然科学基金(31701588);江苏省自然科学基金(BK20170178);中央高校基本科研业务费专项资金(JUSRP11965);江苏高校优势学科建设工程资助项目;高等学校学科创新引智计划(111计划)资助项目(111-2-06);江苏省现代工业发酵协同创新中心资助项目
作者简介:  博士研究生(吴殿辉助理研究员和陆健教授为共同通讯作者,E-mail: wudianhui@jiangnan.edu.cn,jlu@jiangnan.edu.cn)
引用本文:    
田甜甜,孙军勇,蔡国林,等. 基于转录组学的酿酒酵母耐酸机制解析[J]. 食品与发酵工业, 2020, 46(6): 1-7.
TIAN Tiantian,SUN Junyong,CAI Guolin,et al. Transcriptomic profiling reveals the acid-tolerance mechanism of Saccharomyces cerevisiae[J]. Food and Fermentation Industries, 2020, 46(6): 1-7.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.023125  或          http://sf1970.cnif.cn/CN/Y2020/V46/I6/1
[1] DUAN S, HAN P, WANG Q, et al. The origin and adaptive evolution of domesticated populations of yeast from Far East Asia[J]. Nature Communications, 2018, 9(1): 2 690-2 703.
[2] 刘增然. 工业葡萄酒酵母的适应进化和工程菌构建策略[J]. 食品研究与开发, 2011, 32(6):133-138.
[3] VARELA C, SCHMIDT S A, FOULQUIE-BORNEMAN A R, et al. Systems-based approaches enable identification of gene targets which improve the flavour profile of low-ethanol wine yeast strains[J]. Metabolic Engineering, 2018, 49: 178-191.
[4] MEIJNEN J P, RANDAZZO P, MARAIA R, et al. Polygenic analysis and targeted improvement of the complex trait of high acetic acid tolerance in the yeast Saccharomyces cerevisiae[J]. Biotechnology for Biofuels, 2016, 9(1): 5.
[5] 于玲. 耐酸石榴酒酵母的筛选及其耐酸性初步研究[D]. 泰安:山东农业大学, 2008.
[6] 张克俞,张明明,赵心清,等. 关键基因过表达提高酿酒酵母抑制剂耐受性及乙醇发酵性能[J]. 应用与环境生物学报, 2018, 24(3): 541-546.
[7] ROSSIGNOL T, DULAN L, JULIEN A, et al. Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation[J]. Yeast, 2003, 20(16): 1 369-1 385.
[8] 杨宁,王伟明,姚琳,等. 3,5-二硝基水杨酸法测定发酵型果露酒中总糖含量[J]. 中国酿造, 2018, 37(1): 181-184.
[9] 王传荣. 酒精活性干酵母主要质量指标控制的探讨与研究[J]. 江苏调味副食品, 2010(1), 34-37;42.
[10] NYANGA L K, NOUT M J, SMID E J, et al. Fermentation characteristics of yeasts isolated from traditionally fermented masau (Ziziphus mauritiana) fruits[J]. International Journal of Food Microbiology, 2013, 166(3): 426-432.
[11] 白想想. 重排酵母菌转录组注释和基因差异表达分析[D]. 武汉:华中农业大学, 2017.
[12] 赵心清,张明明,徐桂红,等. 酿酒酵母乙酸耐性分子机制的功能基因组进展[J]. 生物工程学报, 2014, 30(3): 368-380.
[13] 陈洪奇,于欣水,张明明,等. 硫酸锌添加对酿酒酵母乙酸胁迫条件下全局基因转录的影响[J]. 微生物学通报, 2017, 44(6): 1 312-1 321.
[14] MIRA N P, HENRIQUES S F, KELLER G, et al. Identification of a DNA-binding site for the transcription factor Haa1, required for Saccharomyces cerevisiae response to acetic acid stress[J]. Nucleic Acids Research, 2011, 39(16): 6 896-6 907.
[15] ZHU X, ZOU S, LI Y, et al. Transcriptomic analysis of Saccharomyces cerevisiae upon honokiol treatment[J]. Research in Microbiology, 2017, 168(7): 626-635.
[16] 郝小明,陈博,安泰. 工业微生物酸胁迫的耐受机制及改造途径[J]. 生物工程学报, 2015, 31(8): 1 151-1 161.
[17] 龙思宇, 严少敏. 酿酒酵母功能基因组学研究进展[J]. 科学技术与工程, 2014, 14(2): 62-66;71.
[18] 王秀菊,杜金华,朱济义,等. 影响果酒酵母甘油产量主要因素的研究[J]. 食品与发酵工业, 2010, 36(2): 80-84.
[19] 屈慧鸽,邓军哲,孙志军,等. 乙酸对葡萄酒不完全发酵的影响[J]. 中外葡萄与葡萄酒, 2002(2): 27-28.
[20] NAVARRO-TAPIA E, NANA R K, QUEROL A, et al. Ethanol cellular defense induce unfolded protein response in yeast[J]. Frontiers in Microbiology, 2016, 7: 189.
[21] AGUILERA F, PEINADO R A, MILLAN C, et al. Relationship membrane in different wine yeast strains[J]. International Journal of Food Microbiology, 2006, 110(1): 34-42.
[22] FLETCHER E, FEIZI A, BISSCHOPS M M M, et al. Evolutionary engineering reveals divergent paths when yeast is adapted to different acidic environments[J]. Metabolic Engineering, 2017, 39: 19-28.
[23] 刘兴艳, 贾博, 赵芳, 等. 酿酒酵母对弱有机酸胁迫的应激机制研究进展[J]. 食品与发酵工业,2013,39(6): 125-129.
[24] FLETCHER E, FEIZI A, KIM S S, et al. RNA-seq analysis of Pichia anomala reveals important mechanisms required for survival at low pH[J]. Microbial Cell Factories, 2015, 14(1): 143.
[1] 王巧莉, 孔梓璇, 谭强飞, 贠建民, 张紊玮, 赵风云. 草菇组织分离继代中菌种退化对相关酶活力的影响[J]. 食品与发酵工业, 2021, 47(8): 1-5.
[2] 吴力亚, 吴天祥, 汪玲. 茯苓提取物参与灰树花液态深层发酵及对其活性物质产量的影响[J]. 食品与发酵工业, 2021, 47(5): 57-62.
[3] 杨新, 陈莉, 杨双全, 卢红梅, 章之柱. 不同培养条件下酿酒酵母菌的转录组差异分析[J]. 食品与发酵工业, 2021, 47(4): 102-109.
[4] 张晓晓, 任剑星, 刘凯毅, 李潇, 董健. TOR1基因缺失对酿酒酵母耐受性的影响[J]. 食品与发酵工业, 2021, 47(2): 1-7.
[5] 冉艳朋, 徐沙, 李由然, 蒋玮, 顾正华, 丁重阳, 张梁, 石贵阳. 代谢工程改造酿酒酵母促进L-苯丙氨酸的合成[J]. 食品与发酵工业, 2020, 46(9): 1-9.
[6] 李亿, 秦艳, 申乃坤, 朱婧, 梁戈, 王青艳. 酿酒酵母pdc基因缺陷菌株的构建及其丙酮酸发酵特性[J]. 食品与发酵工业, 2020, 46(8): 7-13.
[7] 赵雪平, 郑海武, 雷蕾, 李婷, 张美枝, 李正英. 本土酿酒酵母发酵梅鹿辄干红动态变化研究[J]. 食品与发酵工业, 2020, 46(8): 105-110.
[8] 叶片, 刘建, 黄均, 严乐晋, 周荣清. 不同种属酵母菌共培发酵桑葚酒的工艺优化[J]. 食品与发酵工业, 2020, 46(8): 173-178.
[9] 郑海武, 雷蕾, 李正英, 赵雪平, 张美枝, 李婷, 黄海英, 李晓娟, 王春燕. 本土优良酿酒酵母的酿造学特性[J]. 食品与发酵工业, 2020, 46(8): 118-122.
[10] 张熙, 李国辉, 周胜虎, 毛银, 赵运英, 邓禹. 酿酒酵母异源合成己二酸[J]. 食品与发酵工业, 2020, 46(7): 1-9.
[11] 何曼, 刘畅, 朱凤妹, 葛超, 李军, 阎贺静. 昌黎产区产酶酵母多样性及其应用潜力分析[J]. 食品与发酵工业, 2020, 46(5): 59-67.
[12] 欧科, 陈福欣, 王婷, 冯光文, 严贝贝, 白巧秀, 钱卫东, 毛培宏. 基于代谢组学方法的两株酿酒酵母菌胞内差异代谢产物分析[J]. 食品与发酵工业, 2020, 46(4): 39-44.
[13] 陈胜杰, 高翔, 袁戎宇. 常温常压等离子诱变结合玉米秸秆水解液驯化酿酒酵母生产生物乙醇[J]. 食品与发酵工业, 2020, 46(4): 167-171.
[14] 王轩, 周健, 明红梅, 彭璐, 赵炳鑫, 俞飞. 樱桃果酒酿酒酵母的筛选及香气成分分析[J]. 食品与发酵工业, 2020, 46(3): 124-130.
[15] 吴殿辉, 李晓敏, 蔡国林, 孙军勇, 谢广发, 陆健. 低产尿素黄酒酵母工程菌的酿造特性[J]. 食品与发酵工业, 2020, 46(3): 1-7.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn