Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (17): 33-39    DOI: 10.13995/j.cnki.11-1802/ts.023143
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
大肠杆菌过氧化物酶EfeB在细胞氧化应激中的作用
丁亮亮1, 刘进生1, 顾鹏帅1, 唐蕾1,2*
1(工业生物技术教育部重点实验室(江南大学),江苏 无锡,214122)
2(江南大学 生物工程学院,江苏 无锡,214122)
The role of peroxidase EfeB in Escherichia coli under cell oxidative stress
DING Liangliang1, LIU Jinsheng1, GU Pengshuai1, TANG Lei1,2*
1(Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China)
2(School of Biotechnology, Jiangnan University, Wuxi 214122, China)
下载:  HTML   PDF (2128KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了阐明过氧化物酶EfeB对大肠杆菌胞内氧化应激调控的影响,对编码基因efeB进行了同源重组敲除及同源过表达,考察了菌体生长、丙二醛浓度及胞内活性氧水平的变化,并进一步比较了efeB过表达菌株中与氧化胁迫相关基因efeUefeOsodAoxyRkatE和细菌重组修复基因recA在正常和过氧化氢刺激下的表达水平变化。结果表明:过表达efeB对菌体生长有促进作用,过表达菌株Eco/pEE胞内的丙二醛含量相比出发菌株(223.79 nmol/g蛋白)下降了85%,胞内活性氧是出发菌株的1.36倍,同时katE下调了87.62%,efeUefeOsodAoxyRrecA分别上调3.88、1.33、2.48、1.95和1.49倍,过表达菌株Eco/pEE在过氧化氢刺激条件下,katE进一步下调了94.81%,recA进一步上调了8.09倍;反之,菌株缺失efeB生长减缓,胞内丙二醛的含量是出发菌株的1.15倍,胞内活性氧是出发菌株的0.5倍。以上结果提出了大肠杆菌EfeB在细胞氧化应激下新的生理功能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁亮亮
刘进生
顾鹏帅
唐蕾
关键词:  氧化应激  efeB  大肠杆菌  过氧化氢  丙二醛  活性氧    
Abstract: In order to elucidate the effect of the peroxidase EfeB on the regulation of intracellular oxidative stress in Escherichia coli, Red recombination/disruption and over-expression of the efeB gene were performed. The results showed that after over-expression of efeB, the content of malondialdehyde in the cell was decreased by 85% compared with the parental strain (223.79 nmol/g protein), and the level of intracellular reactive oxygen species was 1.36 folds compared with that of the parental strain. Meanwhile, the expression level of katE was decreased 87.62%, while efeU, efeO, sodA, oxyR and recA up-regulated by 3.88, 1.33, 2.48, 1.95 and 1.49 folds respectively. After exogenous addition of H2O2, katE was further down-regulated by 94.81% while recA was further up-regulated by 8.09 folds in the efeB over-expressing strain Eco/pEE. Conversely, efeB-deficient strain exhibited slower growth rate with higher intracellular malondialdehyde content (1.15-fold of the parental strain). The level of intracellular reactive oxygen species in efeB-deficient strain was 0.5-fold of the parental strain. The results provided new physiological function of EfeB in E.coli under oxidative stress.
Key words:  oxidative stress    efeB    Escherichia coli    hydrogen peroxide    malondialdehyde    reactive oxygen species
收稿日期:  2019-12-18      修回日期:  2020-03-24           出版日期:  2020-09-15      发布日期:  2020-10-14      期的出版日期:  2020-09-15
基金资助: 111引智计划项目(111-2-06);国家轻工技术与工程一流学科自主课题项目(LITE2018-27);江苏省现代工业发酵协同创新中心资助项目(BY2013015-11)
作者简介:  硕士研究生(唐蕾教授为通讯作者,E-mail:ltang@jiangnan.edu.cn)
引用本文:    
丁亮亮,刘进生,顾鹏帅,等. 大肠杆菌过氧化物酶EfeB在细胞氧化应激中的作用[J]. 食品与发酵工业, 2020, 46(17): 33-39.
DING Liangliang,LIU Jinsheng,GU Pengshuai,et al. The role of peroxidase EfeB in Escherichia coli under cell oxidative stress[J]. Food and Fermentation Industries, 2020, 46(17): 33-39.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.023143  或          http://sf1970.cnif.cn/CN/Y2020/V46/I17/33
[1] IMLAY J.The molecular mechanisms and physiological consequences of oxidative stress:lessons from a model bacterium[J].Nature Reviews Microbiology,2013,11(7):443-454.
[2] KORSHUNOV S,IMLAY J.Two sources of endogenous hydrogen peroxide in Escherichia coli [J].Molecular Microbiology,2010,75(6):1 389-1 401.
[3] SKULACHEV V P.Mitochondria-targeted antioxidants as promising drugs for treatment of age-related brain diseases[J].Journal of Alzheimers Disease,2012,28(2):283-289.
[4] GONZÁLEZ-FLECHA B,DEMPLE B.Metabolic sources of hydrogen peroxide in aerobically growing Escherichia coli [J].Journal of Biological Chemistry,1995,270(23):13 681-13 687.
[5] 赵海谦,高继慧,周伟,等.抗坏血酸对Fe2+/H2O2体系氧化NO的促进作用[J].化工学报,2015,66(7):2 636-2 642.
[6] DALLE-DONNE I,ALDINI G,CARINI M,et al.Protein carbonylation,cellular dysfunction,and disease progression[J].Journal of Cellular and Molecular Medicine,2006,10(2):389-406.
[7] 刘武康,吴淑燕,陈国薇,等.细菌产生的活性氧及其功能[J].微生物学杂志,2016,36(1):89-95.
[8] MISHRA S,IMLAY J.Why do bacteria use so many enzymes to scavenge hydrogen peroxide?[J].Archives of Biochemistry & Biophysics,2012,525(2):145-160.
[9] ZENG X,CHEN X S,GAO Y,et al.Continuously high reactive oxygen species generation decreased the specific ε-poly-L-lysine formation rate in fed-batch fermentation using glucose and glycerol as a mixed carbon source[J].Process Biochemistry,2015,50(12):1 993-2 003.
[10] IZAWA S,MAEDA K,MIKI T,et al.Importance of glucose-6-phosphate dehydrogenase in the adaptive response to hydrogen peroxide in Saccharomyces cerevisiae [J].Biochemical Journal,1998,330(2):811-817.
[11] STIBOROVÁ,MARIE,et al.Heme peroxidases:structure,function,mechanism and involvement in activation of carcinogens[J].Cheminform,2000,31(27):553-564.
[12] STURM A,SCHIERHORN A,LINDENSTRAUSS U,et al.YcdB from Escherichia coli reveals a novel class of tat-dependently translocated hemoproteins[J].Journal of Biological Chemistry,2006,281(20):13 972-13 978.
[13] CAO J,WOODHALL M R,ALVAREZ J,et al.EfeUOB (YcdNOB) is a tripartite,acid-induced and CpxAR-regulated,low-pH Fe2+transporter that is cryptic in Escherichia coli K-12 but functional in E.coli O157:H7[J].Molecular Microbiology,2007,65(4):857-875.
[14] SUGAWARA K,IGETA E,AMANO Y,et al.Degradation of antifungal anthraquinone compounds is a probable physiological role of DyP secreted by Bjerkandera adusta [J].AMB Express,2019,9.DOI:10.1186/s13568-019-0774-4.
[15] 朱竹兵,孙亚武,唐蕾.褐色嗜热裂孢菌脱色过氧化物酶的表达及发酵条件优化[J].食品与发酵工业,2019,45(13):23-30.
[16] COLPA D,FRAAIJE M.High overexpression of dye decolorizing peroxidase TfuDyP leads to the incorporation of heme precursor protoporphyrin IX[J].Journal of Molecular Catalysis B Enzymatic,2016,134.
[17] 陈丹园,沈云杰,杨燕,等.关键酶基因的过表达与环境因素对大肠杆菌血红素合成的调控[J].食品与发酵工业,2018,44(11):11-18.
[18] DATSENKO,K.A.One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products[J].Proceedings of the National Academy of Sciences of the United States of America,2000,97(12):6 640-6 645.
[19] 巩元勇,倪万潮,郭书巧,等.一种BL21(DE3)ΔaroA菌株的构建方法及其应用:104099363A [P].2014-10-15.
[20] ZHANG X,SHI C,LIU Z,et al.Antibacterial activity and mode of action of ε-polylysine against Escherichia coli O157:H7[J].Journal of Medical Microbiology,2018,67(6):838-845.
[21] 曾昕. 小白链霉菌同步代谢葡萄糖和甘油合成ε-聚赖氨酸的生理机制研究[D].无锡:江南大学,2016.
[22] ARANDA A,SEQUEDO L,TOLOSA L,et al.Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay:A quantitative method for oxidative stress assessment of nanoparticle-treated cells[J].Toxicology in vitro,2013,27(2):954-963.
[23] WANG Z G,ZHU X H,SU Y P,et al.Dimethyl phthalate damaged the cell membrane of Escherichia coli K12[J].Ecotoxicology and Environmental Safety,2019,180:208-214.
[24] AHMED G.The importance of Arabidopsis glutathione peroxidase 8 for protecting Arabidopsis plant and E.coli cells against oxidative stress[J].GM Crops & Food,2013,5(1):20-26.
[25] NA Y A,LEE J Y,BANG W J,et al.Growth retardation of Escherichia coli by artificial increase of intracellular ATP[J].Journal of Industrial Microbiology & Biotechnology,2015,42(6):915-924.
[26] SMIRNOVA G V,SAMOYLOVA Z Y,MUZYKA N G,et al.Influence of polyphenols on Escherichia coli resistance to oxidative stress[J].Free Radical Biology & Medicine,2009,46(6):759-768.
[27] BATINIC-HABERLE I,RAJIC Z,BENOV L.A combination of two antioxidants (an SOD mimic and ascorbate) produces a pro-oxidative effect forcing Escherichia coli to adapt via induction of oxyR regulon[J].Anti-Cancer Agents in Medicinal Chemistry,2011,11(4):329-340.
[28] LONG B,JARUKIT E.The SOS response in Escherichia coli:Single cell analysis using fluorescence microscopy[J].Dissertations & Theses-Gradworks,2009:3 349 731.
[1] 冯艳钰, 臧延青. 三种小麦麸皮总黄酮的体外抗氧化活性[J]. 食品与发酵工业, 2021, 47(9): 16-24.
[2] 师中迪, 宋雪婷, 余旭亚. 外源褪黑素对盐胁迫下单针藻Monoraphidium sp.QLY-1油脂合成的影响[J]. 食品与发酵工业, 2021, 47(9): 63-69.
[3] 解天慧, 石慧. 大肠杆菌O157∶H7噬菌体EC-p9的内溶酶和穿孔素的特性预测及克隆表达[J]. 食品与发酵工业, 2021, 47(9): 107-113.
[4] 刘婷, 周欣, 赵超, 龚小见, 陈华国. 植物多糖对肾损伤干预效果及作用机制研究进展[J]. 食品与发酵工业, 2021, 47(7): 269-277.
[5] 王路, 张蕾, 郑皎碧, 王琼熠, 范辉. 发酵制品调控糖脂代谢性疾病作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(7): 292-300.
[6] 李晨晨, 李梦丽, 江波, 张涛. 2'-岩藻糖基乳糖的生物合成菌株构建及发酵条件研究[J]. 食品与发酵工业, 2021, 47(3): 10-17.
[7] 王静, 韩莹, 连珺怡, 孙玉姣, 刘欢, 陈雪峰. 山药多糖对丙烯酰胺诱导的巨噬细胞氧化损伤的保护作用[J]. 食品与发酵工业, 2021, 47(20): 52-59.
[8] 郭峰, 董明辉, 高梦园, 舒方, 孙冬冬, 汪维云. 柠檬香蜂草精油的气相色谱-质谱联用分析及抑菌活性研究[J]. 食品与发酵工业, 2021, 47(2): 109-113.
[9] 刘云芬, 田天容, 殷菲胧, 廖玲燕, 普红梅, 康超, 帅良. 赤霉素对鲜切莴苣酶促褐变及活性氧代谢的影响[J]. 食品与发酵工业, 2021, 47(19): 215-220.
[10] 皮倩, 夏荣, 唐蕾. 红球菌染料脱色过氧化物酶的异源表达及活性分析[J]. 食品与发酵工业, 2021, 47(18): 86-91.
[11] 刘亚辉, 刘思彤, 王萱, 杨蕊, 金明. 金雀异黄酮对叔丁基过氧化氢诱导的衰老H9c2细胞的保护作用[J]. 食品与发酵工业, 2021, 47(18): 113-118.
[12] 吉正梅, 张晓春, 彭钰迪, 王树林, 布丽君, 解华东. 鸭胚源抗氧化肽TD12对HepG2细胞氧化应激损伤的保护作用[J]. 食品与发酵工业, 2021, 47(18): 141-148.
[13] 张博, 史永吉, 杨辉, 吴梓丹, 陈开, 蔡雪, 柳志强, 郑裕国. 通过发酵优化提高大肠杆菌生产L-半胱氨酸产量[J]. 食品与发酵工业, 2021, 47(18): 175-180.
[14] 李旋, 王加初, 刘益宁, 蒋帅, 吴鹤云, 谢希贤. 代谢工程改造大肠杆菌生产L-丝氨酸[J]. 食品与发酵工业, 2021, 47(17): 1-7.
[15] 冯静茹, 于立雪, 田康明, 牛丹丹, 王正祥. 大肠杆菌D-乳酸脱氢酶(FAD)的分子克隆与酶学性质[J]. 食品与发酵工业, 2021, 47(17): 22-26.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn