Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (10): 35-43    DOI: 10.13995/j.cnki.11-1802/ts.023271
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
罗伊氏乳杆菌CCFM8631缓解小鼠非酒精性脂肪性肝病与其对肠道菌群及短链脂肪酸的调节显著相关
焦婷1, 朱慧越1, 司倩1, 许梦舒1, 孙姗姗1, 马方励2*, 王刚1*, 赵建新1, 张灏1, 陈卫1
1(江南大学 食品学院,江苏 无锡,214122)
2(无限极(中国)有限公司,广东 广州,510623)
Significant correlation between relieving of non-alcoholic fatty liver disease and regulation on gut microbiota and short-chain fatty acids in mice by Lactobacillus reuteri CCFM8631
JIAO Ting1, ZHU Huiyue1, SI Qian1, XU Mengshu1, SUN Shanshan1, MA Fangli2*, WANG Gang1*, ZHAO Jianxin1, ZHANG Hao1, CHEN Wei1
1(School of Food Science and Technology, Jiangnan University, Wuxi 214122, China)
2(Infinitus (China) Company Ltd., Guangzhou 510623, China)
下载:  HTML   PDF (4367KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究不同乳酸菌(lactic acid bacteria,LAB)对高脂高胆固醇饮食(high-fat and high-cholesterol diet,HFHCD)诱导的非酒精性脂肪性肝病(non-alcoholic fatty liver disease,NAFLD)小鼠的疾病进程的影响,该研究对4周龄C57BL/6J小鼠喂食HFHCD的同时灌胃不同LAB 23周。实验结束时,测定小鼠血脂血糖指标、肝脏病理指标、粪便短链脂肪酸(short-chain fatty acids,SCFAs)的含量以及肠道菌群情况。结果表明,补充LAB能够缓解NAFLD小鼠体重增量增加以及肝脏损伤,但在血脂和血糖调控上具有不同效果,其中罗伊氏乳杆菌CCFM8631在各方面均有良好的调控效果,另外,CCFM8631的摄入显著提高了4种SCFAs的含量,上调了BifidobacteriumLactobacillusDesulfovibrio的丰度,降低了MucispirillumTuricibacterSMB53以及Allobaculum的丰度。肠道内指标与肝脏病理指标之间的相关性分析表明,SCFAs水平和肠道菌群结构与NAFLD的缓解显著相关。因此,罗伊氏乳杆菌CCFM8631对肠道菌群结构及SCFAs含量的调节可能是其发挥缓解NAFLD作用的重要途径。该研究为NAFLD预防或治疗提供了新的选择,且为制备防治NAFLD的益生菌制剂提供了参考依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
焦婷
朱慧越
司倩
许梦舒
孙姗姗
马方励
王刚
赵建新
张灏
陈卫
关键词:  罗伊氏乳杆菌  高脂高胆固醇饮食  非酒精性脂肪性肝病  短链脂肪酸  肠道菌群    
Abstract: In order to investigate the effects of different lactic acid bacteria (LAB) on the progression of non-alcoholic fatty liver disease (NAFLD) in mice which was induced by a high-fat and high-cholesterol diet (HFHCD), 4-week-old C57BL/6J mice were fed with HFHCD while administrated different LAB for 23 weeks. At the end of experiment, the blood lipid, blood glucose, liver inflammation, liver damage, fecal short-chain fatty acids (SCFAs), and gut microbiota were evaluated. It was showed that LAB supplementation prevented abnormal weight gain and liver damage induced by HFHCD, while showing different effects on the blood lipid and blood glucose regulation. Among all the strains, Lactobacillus reuteri CCFM8631 showed the highest capacity in alleviation of NAFLD. Furthermore, at the end of the treatment, the fecal SCFAs content and the abundance of Bifidobacterium, Lactobacillus, and Desulfovibrio significantly increased, whilst the abundance of Mucispirillum, Turicibacter, SMB53, and Allobaculum were significantly reduced. Correlation analysis between intestinal and liver pathological indicators showed that regulation on the SCFAs and gut microbiota was significantly associated with NAFLD alleviation. Therefore, the regulation on the SCFAs and gut microbiota by Lactobacillus reuteri CCFM8631 may be an important way for it to relieve NAFLD. This study provides a reference for the preparation of probiotic products in NAFLD prevention. This study provides a new option for the prevention and treatment of NAFLD. Also, it provides a reference for the development of probiotic preparations for NAFLD.
Key words:  Lactobacillus reuteri    high-fat and high-cholesterol diet    non-alcoholic fatty liver disease    short chain fatty acids    gut microbiota
收稿日期:  2020-01-06                出版日期:  2020-05-25      发布日期:  2020-06-17      期的出版日期:  2020-05-25
基金资助: 国家自然科学基金项目(31671839)
作者简介:  硕士研究生(马方励工程师和王刚副教授为共同通讯作者,E-mail:Mary.Ma@infinitus-int.com;wanggang@jiangnan.edu.cn)
引用本文:    
焦婷,朱慧越,司倩,等. 罗伊氏乳杆菌CCFM8631缓解小鼠非酒精性脂肪性肝病与其对肠道菌群及短链脂肪酸的调节显著相关[J]. 食品与发酵工业, 2020, 46(10): 35-43.
JIAO Ting,ZHU Huiyue,SI Qian,et al. Significant correlation between relieving of non-alcoholic fatty liver disease and regulation on gut microbiota and short-chain fatty acids in mice by Lactobacillus reuteri CCFM8631[J]. Food and Fermentation Industries, 2020, 46(10): 35-43.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.023271  或          http://sf1970.cnif.cn/CN/Y2020/V46/I10/35
[1] LI J, ZOU B, YEO Y H, et al. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999-2019: A systematic review and meta-analysis[J]. The Lancet Gastroenterology & Hepatology, 2019, 4(5): 389-398.
[2] XIE C, YAGAI T, LUO Y, et al. Activation of intestinal hypoxia-inducible factor 2alpha during obesity contributes to hepatic steatosis[J]. Nat Med, 2017, 23(11): 1 298-1 308.
[3] WESOLOWSKI S R, KASMI K C, JONSCHER K R, et al. Developmental origins of NAFLD: A womb with a clue[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(2): 81-96.
[4] 中华医学会肝病学分会脂肪肝和酒精性肝病学组, 中国医师协会脂肪性肝病专家委员会. 非酒精性脂肪性肝病防治指南(2018年更新版)[J].使用肝脏病杂志, 2018,21(2):177-186.
[5] JIANG W, WU N, WANG X, et al. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease[J]. Sci Rep, 2015(5):8 096.
[6] LEUNG C, RIVERA L R, FURNESS J B, et al. The role of the gut microbiota in NAFLD[J]. Nature Reviews Gastroenterology & Hepatology, 2016,13(7):412-425.
[7] LEUNG C, RIVERA L, FURNESS J B, et al. The role of the gut microbiota in NAFLD[J]. Nat Rev Gastroenterol Hepatol, 2016, 13(7): 412-425.
[8] TILG H, CANI P D, MAYER E A. Gut microbiome and liver diseases[J]. Gut, 2016, 65(12): 2 035-2 044.
[9] MIHAILOVIC' M, ZˇIVKOVIC' M, JOVANOVIC' J A, et al. Oral administration of probiotic Lactobacillus paraplantarum BGCG11 attenuates diabetes-induced liver and kidney damage in rats[J]. Journal of Functional Foods, 2017(38):427-437.
[10] 王晓伟, 高鹏飞, 姚国强, 等. 非酒精性脂肪肝与肠道菌群及益生菌的相关性研究进展[J].现代预防医学, 2015, 42(12): 2 153-2 155;2 174.
[11] 司倩, 焦婷, 杨树荣, 等. 两歧双歧杆菌缓解Ⅱ型糖尿病的效果差异及机制分析[J].食品与发酵工业,2019,45(22):12-19.
[12] 朱广素, 王刚, 王园园, 等. 植物乳杆菌通过调节肠道短链脂肪酸水平缓解代谢综合征[J].食品科学,2019, 40(13): 102-109.
[13] BEDOSSA P, CONSORTIUM F P. Utility and appropriateness of the fatty liver inhibition of progression (FLIP) algorithm and steatosis, activity, and fibrosis (SAF) score in the evaluation of biopsies of nonalcoholic fatty liver disease[J]. Hepatology, 2014, 60(2): 565-575.
[14] WANG G, XU Q, JIN X, et al. Effects of lactobacilli with different regulatory behaviours on tight junctions in mice with dextran sodium sulphate-induced colitis[J]. Journal of Functional Foods, 2018:47:107-115.
[15] WANG L, PAN M, LI D, et al. Metagenomic insights into the effects of oligosaccharides on the microbial composition of cecal contents in constipated mice[J]. Journal of Functional Foods, 2017,38(PartA):486-496.
[16] 朱广素, 王刚, 王园园, 等. 两株具有缓解代谢综合征功能的人源益生菌的安全性评价[J].食品与发酵工业,2018, 44(8): 57-64.
[17] 张如春, 司华哲, 陈双双, 等. 罗伊氏乳杆菌在畜禽生产中应用的研究进展[J].动物营养学报,2019, 31(3): 1 031-1 036.
[18] 冯秀娟, 左芳雷, 陈丽丽, 等. 乳酸菌耐酸耐胆盐分析与胆盐水解酶研究[J].中国食品学报, 2013, 13(11): 139-147.
[19] LIN H V, FRASSETTO A, KOWALIK E J J R, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms[J]. PLoS One, 2012, 7(4): 35 240.
[20] GAO Z, YIN J, ZHANG J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice[J]. Diabetes, 2009, 58(7): 1 509-1 517.
[21] ZHOU D, CHEN Y W, ZHAO Z H, et al. Sodium butyrate reduces high-fat diet-induced non-alcoholic steatohepatitis through upregulation of hepatic GLP-1R expression[J]. Exp Mol Med, 2018, 50(12): 157.
[22] 饶文婷, 罗尚菲, 张雅心, 等. 阿魏酸对高脂血症小鼠肝脂肪变性及肠道菌群的调节作用[J].中国实验动物学报,2020,28(1):36-42.
[23] DEL CHIERICO F, NOBILI V, VERNOCCHI P, et al. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach[J]. Hepatology, 2017, 65(2): 451-464.
[24] SHIN N-R, WHON T W, BAE J W. Proteobacteria: microbial signature of dysbiosis in gut microbiota[J]. Trends in Biotechnology, 2015, 33(9): 496-503.
[25] DIN A U, HASSAN A, ZHU Y, et al. Inhibitory effect of Bifidobacterium Bifidum ATCC 29521 on colitis and its mechanism[J]. The Journal of Nutritional Biochemistry, 2020,79: 108 353.
[26] 王佳丽, 修成奎, 杨静, 等. 人参三七川芎提取物对高糖高脂诱导血管衰老小鼠肠道菌群的影响[J/OL].中国中药杂志,1-11.https://doi.org/10.19540/j.cnki.cjcmm.20200117.401.
[27] WAN P, PENG Y, CHEN G, et al. Modulation of gut microbiota by Ilex kudingcha improves dextran sulfate sodium-induced colitis[J]. Food Research International, 2019, 126:108 595.
[28] WAN X Z, LI T T, ZHONG R T, et al. Anti-diabetic activity of PUFAs-rich extracts of Chlorella pyrenoidosa and Spirulina platensis in rats[J]. Food and Chemical Toxicology, 2019, 128:233-239.
[29] HUANG K, YU W, LI S, et al. Effect of embryo-remaining oat rice on the lipid profile and intestinal microbiota in high-fat diet fed rats[J]. Food Research International, 2020, 129:108 816.
[30] MASANORI H, TAKAMASA M, SATOMI H, et al. Comparative analysis of the intestinal flora in type 2 diabetes and nondiabetic mice[J].Experimental animals, 2017, 66(4):405-416.
[31] ZHU W, GREGORY J C, ORG E, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk[J]. Cell, 2016, 165(1): 111-124.
[32] TAN X, LIU Y, LONG J, et al. Trimethylamine N-oxide aggravates liver steatosis through modulation of bile acid metabolism and inhibition of farnesoid X receptor signaling in nonalcoholic fatty liver disease[J]. Molecular Nutrition & Food Research, 2019, 63(17): 1 900 257.
[33] 程俊俊, 吴霞. 肠道微生物代谢产物氧化三甲胺与非酒精性脂肪性肝病研究进展[J]. 肝脏, 2017, 22(11): 1 056-1 058.
[34] 张丹琴, 杨帆, 李胜保. 非酒精性脂肪性肝病患者血清TLR4、IL-10、 IL-22与肠道菌群的相关性[J]. 肝脏, 2019, 24(12): 1 432-1 434.
[35] 陈新君. 复方四君子汤及党参多糖调节溃疡性结肠炎小鼠肠道菌群的作用研究[D]. 兰州:兰州大学, 2016.
[36] 刘保文. 肝硬化及肝硬化合并糖尿病患者肠道微生态研究[D]. 天津:天津医科大学, 2017.
[37] 李帆. 中国人群非酒精性脂肪性肝病患者肠道菌群结构的研究[D]. 北京:中国人民解放军医学院, 2014.
[1] 史瑛, 冯欣静, 周志磊, 姬中伟, 徐岳正, 毛健. 黄酒多糖对炎症性肠病及便秘作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(9): 275-283.
[2] 贾叶, 包斌, 马明, 魏婷. 蚕蛹蛋白源肠内营养混悬剂对二型糖尿病小鼠肠道菌的影响[J]. 食品与发酵工业, 2021, 47(8): 62-66.
[3] 王路, 张蕾, 郑皎碧, 王琼熠, 范辉. 发酵制品调控糖脂代谢性疾病作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(7): 292-300.
[4] 朱慧越, 邹仁英, 许梦舒, 王琳琳, 田培郡, 陈卫, 王刚. 短链脂肪酸-酰化淀粉对小鼠抑郁样行为的缓解及机制[J]. 食品与发酵工业, 2021, 47(6): 26-33.
[5] 邹仁英, 朱慧越, 许梦舒, 田培郡, 张灏, 赵建新, 陈卫, 王刚. “精神益生菌”对慢性应激诱导的抑郁和便秘症状的缓解及机制研究[J]. 食品与发酵工业, 2021, 47(3): 1-9.
[6] 徐珒昭, 汤梦琪, 徐境含, 滕国新, 许晓曦. 焦谷氨酸对高盐饮食小鼠肠道健康及肠道菌群的作用[J]. 食品与发酵工业, 2021, 47(2): 102-108.
[7] 孔庆敏, 朱慧越, 田培郡, 赵建新, 张灏, 陈卫, 王刚. 嗜酸乳杆菌La28对丙戊酸暴露引起的子代大鼠外周炎症和肝损伤的缓解作用[J]. 食品与发酵工业, 2021, 47(1): 125-131.
[8] 杨开, 张雅杰, 张酥, 蔡铭, 皮雄娥, 胡君荣, 关荣发, 孙培龙. 灵芝孢子粉低聚糖的制备及调节肠道菌群功能研究[J]. 食品与发酵工业, 2020, 46(9): 37-42.
[9] 刘卫宝, 余讯, 徐静静, 詹晓北, 张洪涛, 朱莉. 黄芪多糖的分离、结构表征及益生活性研究[J]. 食品与发酵工业, 2020, 46(7): 50-56.
[10] 赵孟良, 任延靖. 菊粉及其调节宿主肠道菌群机制的研究进展[J]. 食品与发酵工业, 2020, 46(7): 271-276.
[11] 金星, 贺禹丰, 周永华, 陈晓华, 王刚, 赵建新, 张灏, 陈卫. 唾液乳杆菌CCFM 1054通过改变肠道菌群缓解空肠弯曲杆菌在小鼠体内的感染[J]. 食品与发酵工业, 2020, 46(5): 1-8.
[12] 谭莎莎,马方励,崔树茂,毛丙永,唐鑫,赵建新,张灏,陈卫. 罗伊氏乳杆菌冻干保护剂的优选及高密度冻干工艺优化[J]. 食品与发酵工业, 2020, 46(4): 1-6.
[13] 杨树荣, 朱慧越, 乌翛冰, 孙姗姗, 司倩, 张秋香, 王琳琳, 王刚, 赵建新, 张灏, 陈卫. 副干酪乳杆菌缓解由洛哌丁胺诱导的小鼠便秘的差异[J]. 食品与发酵工业, 2020, 46(2): 25-31.
[14] 管玲娟, 曹丛丛, 屠飘涵, 成向荣. 缺铁对肠道免疫功能的影响及新型补铁剂的研究进展[J]. 食品与发酵工业, 2020, 46(19): 264-270.
[15] 刘霞, 黄雅萍, 卢旭, 郑宝东, 缪松, 邓凯波. 抗性淀粉的结构性质与功能关系研究进展[J]. 食品与发酵工业, 2020, 46(18): 279-286.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn