Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (5): 1-8    DOI: 10.13995/j.cnki.11-1802/ts.023280
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
唾液乳杆菌CCFM 1054通过改变肠道菌群缓解空肠弯曲杆菌在小鼠体内的感染
金星1, 贺禹丰1, 周永华2*, 陈晓华3, 王刚1*, 赵建新1, 张灏1, 陈卫1
1(江南大学 食品学院,江苏 无锡,214122)
2(国家卫生健康委寄生虫病预防与控制技术重点实验室,江苏 无锡,214064)
3(衡阳师范学院 生命科学与环境学院,湖南 衡阳,421008)
Lactobacillus salivarius CCFM 1054 alleviates the infection ofCampylobacter jejuni in mice by regulating the gut microbiota
JIN Xing1, HE Yufeng1, ZHOU Yonghua2*, CHEN Xiaohua3, WANG Gang1*, ZHAO Jianxin1, ZHANG Hao1, CHEN Wei1
1(School of Food Science and Technology, Jiangnan University, Wuxi 214122, China)
2(Key Laboratory of Parasitic Disease Prevention and Control Technology for National Health andHealth Commission,Wuxi 214064, China)
3(College of Life Science and Environment, Hengyang Normal University, Hengyang 421008, China)
下载:  HTML   PDF (2660KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 考察了唾液乳杆菌(Lactobacillus salivarius)CCFM 1054体外培养产酸及发酵上清液抑制空肠弯曲杆菌(Campylobacter jejuni)生长能力、对人工模拟胃肠液中的耐受、对共培养条件下的抑菌能力、对HT-29细胞的粘附以及自我形成生物膜的能力,并以鼠李糖乳杆菌LGG和植物乳杆菌N49作为对比菌株,分别干预空肠弯曲杆菌和弓形虫复合感染的小鼠。结果显示,CCFM 1054能显著改变小鼠肠道菌群的组成,降低空肠弯曲杆菌在小鼠体内的定植率并缓解其感染。肠道菌群变化和乳酸菌拮抗空肠弯曲杆菌相关的体内外特性的相关性分析表明,CCFM 1054对细胞的高粘附性及其较强的生物膜形成能力使得其能在小鼠体内显著改变肠道菌群丰度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金星
贺禹丰
周永华
陈晓华
王刚
赵建新
张灏
陈卫
关键词:  唾液乳杆菌  空肠弯曲杆菌  肠道菌群    
Abstract: In this study, the biological characteristics of Lactobacillus salivarius CCFM 1054 in vitro were evaluated, such as the ability of acid production, the antibacterial ability of free supernatant for Campylobacter jejuni growth, the tolerance to artificial gastrointestinal fluids, the inhibition to co-cultured C. jejuni, the adhesion to HT-29 cell and the ability of biofilms generation. It was founded that CCFM 1054 had strong acid-producing ability and could inhibit the growth of C. jejuni in vitro. At the same time, it had good tolerance under artificial simulated gastrointestinal fluid, high adhesion to HT-29 cells and strong self-film-forming ability. The L. rhamnosus LGG and L. plantarum N49 were used as control strains to CCFM 1054 when administered to C. jejuni and Toxoplasma co-infected mice by gavage. The results showed that CCFM 1054 could significantly change the composition of gut microbiota, such as Firmicutes, Bacteroidetes and Proteobacteria at the phylum level and Campylobacter, Lactobacillus, Pediococcus, Faecoccus, Coprococcus and Unclassified Enterobacteriaceae at the genera level. Changes in gut microbes reduced the colonization of C. jejuni in mice and alleviated the infection of C. jejuni in vivo. The correlation between the changes of gut microbiota and the biological characteristics of lactic acid bacteria in vitro indicated that CCFM 1054's high adhesion to HT-29 cell and strong biofilm-forming ability made it change the gut microbiota in mice significantly.
Key words:  Lactobacillus salivarius    Campylobacter jejuni    gut microbiota
收稿日期:  2020-01-07                出版日期:  2020-03-15      发布日期:  2020-04-10      期的出版日期:  2020-03-15
基金资助: 国家自然科学基金资助项目(31671839,31601444,31301407);湖南省教育厅资助科研项目(15B034);湖南省自然科学基金资助项目(2019JJ50014)
作者简介:  博士研究生(周永华研究员和王刚副教授为共同通讯作者,E-mail:zhouyonghua@jipd.com;wanggang@jiangnan.edu.cn)
引用本文:    
金星,贺禹丰,周永华,等. 唾液乳杆菌CCFM 1054通过改变肠道菌群缓解空肠弯曲杆菌在小鼠体内的感染[J]. 食品与发酵工业, 2020, 46(5): 1-8.
JIN Xing,HE Yufeng,ZHOU Yonghua,et al. Lactobacillus salivarius CCFM 1054 alleviates the infection ofCampylobacter jejuni in mice by regulating the gut microbiota[J]. Food and Fermentation Industries, 2020, 46(5): 1-8.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.023280  或          http://sf1970.cnif.cn/CN/Y2020/V46/I5/1
[1] JAVID I. DASTI, A. MALIK Tareen, et al. Campylobacter jejuni: A brief overview on pathogenicity-associated factors and disease-mediating mechanisms [J]. International Journal of Medical Microbiology, 2010, 300(4): 205-211.
[2] ELAINE S, ROBERT M H, FREDERICK J A, et al. Foodborne illness acquired in the united states—major pathogens [J]. Emerging Infectious Diseases, 2011, 1(17): 7-15.
[3] JINlIN Huang, XIAOQI Zang, WEIHUA Zhai, et al. Campylobacter spp. in chicken-slaughtering operations: A risk assessment of human campylobacteriosis in East China [J]. Food Control, 2018, 86: 249-256.
[4] KATE O P, CHRISTA L F, WALKER R E B. Quantifying the association between Campylobacter infection and guillain-barré syndrome: A systematic review [J]. J Health Popul Nutr, 2010, 28(6): 545-552.
[5] SAHIN O, KASSEM I, SHEN Z, et al. Campylobacter in poultry: ecology and potential interventions [J]. Avian Dis, 2015, 59:185-200.
[6] MOORE J E, BARTON M D, BLAIR I.S, et al. The epidemiology of antibiotic resistance in Campylobacter [J]. Microbes In-fect, 2006, 8(7): 1955-1966.
[7] PADUNGTON P, KANEENE J B. Campylobacter spp. in human, chickens, pigs and their antimicrobial resistance [J]. J Vet Med Sci,2003, 65(2): 161-170.
[8] SLUTSKER L, RIES A A, GREENE K D, et al. Escherichia coli O157: H7 diarrhea in the United States: clinical and epi-demiologic features[J]. Annals of Internal Medicine, 1997, 126: 505-513.
[9] NISHIYAMA K, SETO Y, YOSHIOKA K, et al. Lactobacillus gasseri SBT2055 reduces infection by and colonization of Campylobacter jejuni [J]. PLOS ONE, 2014, 9(9): 1-9.
[10] COLE K, FARNELL M B, DONOGHUE A M, et al. Bacteriocins reduce Campylobacter colonization and alter gut morphology in turkey poults [J]. Poultry Science, 2016, 85(9): 1 570-1 575.
[11] RYAN K A, DALY P, LI Y, et al. Strain-specific inhibition of Helicobacter pylori by Lactobacillus salivarius and other lactobacilli [J]. Journal of Antimicrobial Chemotherapy, 2008, 61(4): 831-834.
[12] SGOURAS D, MARAGKOUDAKIS P, PETRAKI K, et al. In vitro and in vivo inhibition of Helicobacter pylori by Lactobacillus casei strain Shirota [J]. Applied and Environmental Microbiology, 2004, 70(1):518-526.
[13] 姚沛琳. 乳酸菌抑制变异链球生物膜形成的研究 [D]. 无锡: 江南大学, 2015.
[14] 刘妍. 桦褐孔菌多糖对弓形虫感染小鼠病理学影响的研究 [D]. 延吉: 延边大学, 2011.
[15] WANG G, HE Y F, ZHOU Y H, et al. The effect of co-infection of food-borne pathogenic bacteria on the progression of Campylobacter jejuni infection in mice [J]. Frontiers in Microbiology, 2018, 9: 1-13.
[16] MAKRAS L, TRIANTAFYLLOU V, FAYLO Messaoudi D, et al. Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar typhimurium reveals a role for lactic acid and other inhibitory compounds [J]. Research in Microbiology, 2006, 157(3): 241-247.
[17] CHAVEERACH P, KEUZENKAMP D A, URLINGS H A, et al. In vitro study on the effect of organic acids on Campylobacter jejuni/coli populations in mixtures of water and feed [J]. Poultry Science, 2002, 81(5): 621-628.
[18] HUANG Y, ADAMS M C. In vitro assessment of the upper gastrointestinal tolerance of potential probiotic dairy propionibacteria [J]. International Journal of Food Microbiology, 2004, 91(3): 253-260.
[19] 辛羚, 郭本恒, 吴正钧,等. 3株乳杆菌在模拟消化环境中存活性能的研究 [J]. 中国乳品工业, 2005, 33(5): 15-17.
[20] 赵煜. 具有拮抗空肠弯曲杆菌功效的乳酸菌的研究[D]. 无锡: 江南大学, 2012.
[21] FIGUEIRA C P, CRODA J, CHOY H A, et al. Heterologous expression of pathogen-specific genes ligAand ligBin the saprophyte Leptospira biflexa confers enhanced adhesion to cultured cells and fibronectin [J]. BMC Microbiology, 2011, 11(1): 129-136.
[22] BURGAIN J, GAIANI C, FRANCIUS G, et al. In vitro interactions between probiotic bacteria and milk proteins probed by atomic force microscopy [J]. Colloids & Surfaces B Biointerfaces, 2013, 104: 153-159.
[23] ADLERBERTH I, AHRNE S, JOHANSSON M L, et al. A mannose-specific adherence mechanism in Lactobacillus plantarum conferring binding to the human colonic cell line HT-29 [J]. Applied and Environmental Microbiology, 1996, 62(7): 2 244-2 251.
[24] TUOMOLA E M, OUWEHAND A C, SALMINEN S J, et al. Adhesion of some probiotic and dairy Lactobacillus strains to Caco-2 cell cultures [J]. International Journal of Food Microbiology, 1999, 26(2): 137-142.
[25] TUOMOLA E M, SALMINEN S J. Adhesion of some probiotic and dairy Lactobacillus strains to Caco-2 cell cultures [J]. International Journal of Food Microbiology, 1998, 41(1): 45-51.
[26] 王坤, 闫颖娟, 姜梅, 等. 保加利亚乳杆菌和嗜热链球菌生物膜形成研究 [J]. 食品科学, 2011, 32(19): 184-187.
[27] EL-ADWI H, EL-SHEEKH M, KHALIL M, et al. Lactic acid bacterial extracts as anti-Helicobacter pylori: a molecular approach [J]. Irish Journal of Medical Science, 2013, 182(3): 439-452.
[28] HAAG L M, FISCHER A, OTTO B, et al. Intestinal microbiota shifts towards elevated commensal Escherichia coli loads abrogate colonization resistance against Campylobacter jejuni in mice [J]. PloS One, 2012, 7(5): 1-13.
[29] CHANG C, MILLER J F. Campylobacter jejuni colonization of mice with limited enteric flora [J]. Infect Immun, 2006, 74(9): 5 261-5 271.
[30] STAHL M, RIES J, VERMEULEN J, et al. A novel mouse model of Campylobacter jejuni gastroenteritis reveals key pro-inflammatory and tissue protective roles for toll-like receptor signaling during infection [J]. PLoS Pathog, 2014, 10(7): 1-16.
[31] PHILLIP T, KELSEY A, JULIA A, et al. Transplanted human fecal microbiota enhanced Guillain Barré syndrome autoantibody responses after Campylobacter jejuni infection in C57BL/6 mice [J]. Microbiome, 2017, 5: 1-22.
[32] HAGHIGHI H R, GONG J, GYLES C I, et al. Modulation of antibody-mediated immune response by probiotics in chickens [J]. Clin Diagn Lab Immunol, 2005, 12(12): 1387-1392.
[33] WANG W N, BEAI R K. Egional and global chan-ges in TCR αββ inlll repertoires in the gut are dependent upon the complexity of the enteric microflora [J]. Dev Comp Immunol, 2010, 34(4): 406-417.
[34] CORRIDONI D, PASTORELLI L, MATTIOLI B, et al. Probiotic bacteria regulate intestinal epithelial permeability in experimental ileitis by a TNF-dependent mechanism [J]. PloS One, 2012, 7(7): 1-10.
[35] DAVID L A, MATERNA A C, FRIDMAN J, et al. Host lifestyle affects human microbiota on daily timescales [J]. Genome Biol, 2014, 15: 1-15.
[36] SAKARIDIS I, ELLIS R J, CAWTHRAW S A, et al. Investigating the association between the caecal microbiomes of broilers and Campylobacter burden [J]. Frontiers in Microbiology, 2018, 9: 1-9.
[37] FORDER R E A, HOWARTH G S, TIVEY D R, et al. Bacterial modulation of small intestinal goblet cells and mucin composition during early post-hatch development of poulty [J]. Poult Sci, 2007, 86(11): 2 396-2 403.
[38] DERRIEN M, VAN P. Mucin-bacterial interactions in the human oral cavity and digestive tract [J]. Gut Microbes, 2010, 1(4): 254-268.
[39] GUERRIERI E, NIEDERHAUSERN S D, MESSI P, et al. Use of lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes in a small-scale model [J]. Food Control, 2009, 20(9):861-865.
[40] OLNEY J W, ADAMO N J, RATHER A. Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: Effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties [J].Food Microbiology, 2016, 53(Pt A):51-59.
[1] 史瑛, 冯欣静, 周志磊, 姬中伟, 徐岳正, 毛健. 黄酒多糖对炎症性肠病及便秘作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(9): 275-283.
[2] 贾叶, 包斌, 马明, 魏婷. 蚕蛹蛋白源肠内营养混悬剂对二型糖尿病小鼠肠道菌的影响[J]. 食品与发酵工业, 2021, 47(8): 62-66.
[3] 王路, 张蕾, 郑皎碧, 王琼熠, 范辉. 发酵制品调控糖脂代谢性疾病作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(7): 292-300.
[4] 徐珒昭, 汤梦琪, 徐境含, 滕国新, 许晓曦. 焦谷氨酸对高盐饮食小鼠肠道健康及肠道菌群的作用[J]. 食品与发酵工业, 2021, 47(2): 102-108.
[5] 孔庆敏, 朱慧越, 田培郡, 赵建新, 张灏, 陈卫, 王刚. 嗜酸乳杆菌La28对丙戊酸暴露引起的子代大鼠外周炎症和肝损伤的缓解作用[J]. 食品与发酵工业, 2021, 47(1): 125-131.
[6] 董晨阳, 张红星, 贾宇, 谢远红, 刘慧, 金君华. 唾液乳杆菌M18-6体外抗氧化功能评价及其机制探讨[J]. 食品与发酵工业, 2021, 47(1): 132-137.
[7] 杨开, 张雅杰, 张酥, 蔡铭, 皮雄娥, 胡君荣, 关荣发, 孙培龙. 灵芝孢子粉低聚糖的制备及调节肠道菌群功能研究[J]. 食品与发酵工业, 2020, 46(9): 37-42.
[8] 赵孟良, 任延靖. 菊粉及其调节宿主肠道菌群机制的研究进展[J]. 食品与发酵工业, 2020, 46(7): 271-276.
[9] 周丽君, 杨苗苗, 魏春艳, 潘长沛, 黄时海. 唾液乳杆菌的抗氧胁迫能力及有氧发酵条件[J]. 食品与发酵工业, 2020, 46(22): 98-105.
[10] 管玲娟, 曹丛丛, 屠飘涵, 成向荣. 缺铁对肠道免疫功能的影响及新型补铁剂的研究进展[J]. 食品与发酵工业, 2020, 46(19): 264-270.
[11] 刘霞, 黄雅萍, 卢旭, 郑宝东, 缪松, 邓凯波. 抗性淀粉的结构性质与功能关系研究进展[J]. 食品与发酵工业, 2020, 46(18): 279-286.
[12] 金星, 贺禹丰, 周永华, 陈晓华, 王刚, 赵建新, 张灏, 陈卫. 具有高细胞黏附性及高生物膜形成能力的植物乳杆菌有效抑制小鼠体内空肠弯曲杆菌毒力因子的转录活性[J]. 食品与发酵工业, 2020, 46(14): 12-18.
[13] 张世奇, 唐兰兰, 孙劲毅, 杨娟, 惠永海. 辣椒素降糖作用及其机制研究进展[J]. 食品与发酵工业, 2020, 46(13): 262-269.
[14] 冯潇, 包璇, 向沙沙, 沈宇标, 应轩宇, 应剑, 纪伟, 朱炫. 探究钴卟啉模拟结肠发酵对肠道菌群的调控[J]. 食品与发酵工业, 2020, 46(12): 87-94.
[15] 焦婷, 朱慧越, 司倩, 许梦舒, 孙姗姗, 马方励, 王刚, 赵建新, 张灏, 陈卫. 罗伊氏乳杆菌CCFM8631缓解小鼠非酒精性脂肪性肝病与其对肠道菌群及短链脂肪酸的调节显著相关[J]. 食品与发酵工业, 2020, 46(10): 35-43.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn