Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (17): 40-45    DOI: 10.13995/j.cnki.11-1802/ts.023486
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
仿刺参体壁水提物中生物大分子的鉴定
宋艳1, 常耀光1,2*, 薛长湖1,2, 申晶晶1
1(中国海洋大学 食品科学与工程学院,山东 青岛,266003)
2(青岛海洋科学与技术试点国家实验室 海洋药物与生物制品功能实验室,山东 青岛,266237)
Identification of biomacromolecules in water extract of the body wall of sea cucumber Apostichopus japonicus
SONG Yan1, CHANG Yaoguang1,2*, XUE Changhu1,2, SHEN Jingjing1
1(College of Food Science and Engineering,Ocean University of China,Qingdao 266003,China)
2(Laboratory for Marine Drugs and Bioproducts,Qingdao National Laboratory for Marine Science and Technology,Qingdao 266237, China)
下载:  HTML   PDF (1267KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用匀浆水提处理获取仿刺参体壁水提物,测得其中蛋白质质量分数为(41.03±1.97)%,多糖质量分数为(36.51±1.58)%。基于蛋白组学技术鉴定出水提物中蛋白分子400余种,丰度较高的蛋白主要是卵黄蛋白、原肌球蛋白及肌动蛋白等。单糖组成分析和核磁共振波谱分析确认水提物中的多糖主要为岩藻聚糖硫酸酯,其分子质量为(5 172.5±107.6) kDa;利用多种变性剂破坏水提物中可能存在的分子间相互作用,发现处理前后岩藻聚糖硫酸酯分子量无显著变化,说明该多糖以非聚集体的形式存在于水提物中。该研究首次明确了仿刺参体壁水提物中的蛋白质和多糖的分子种类,可为后续优化海参加工工艺、减少海参加工中的营养物质流失提供理论指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋艳
常耀光
薛长湖
申晶晶
关键词:  海参  水提物  生物大分子  蛋白质组学  岩藻聚糖硫酸酯    
Abstract: Sea cucumber is an important economic aquatic product in China. In this study, water extract in the body wall of Apostichopus japonicus was obtained by homogenization and water extraction. The protein and polysaccharide content in the water extract was(41.03 ± 1.97)% and (36.50 ± 1.58)%, respectively. Proteomics revealed that the water extract contained more than 400 types of protein molecules, majorly including yolk protein, tropomyosin and actin. Monosaccharide composition analysis and nuclear magnetic resonance spectroscopy analysis confirmed that the polysaccharide in the water extract was mainly sulfated fucan (FUC) with a molecular weight of (5 172.5 ± 107.6) kDa; various denaturants were used to destroy possible molecules in the water extract between them. It was found that the molecular weight of FUC did not change significantly before and after treatment, suggesting that FUC existed in a non-aggregated form. This study identifies for the first time the molecular types of proteins and polysaccharides in the water extract of the sea cucumber body wall, which could provide theoretical guidance for the subsequent optimization of sea cucumber processing techniques and reduction of the nutrient loss during the processing.
Key words:  sea cucumber    water extract    biomacromolecule    proteomics    sulfated fucan
收稿日期:  2020-02-02      修回日期:  2020-03-31           出版日期:  2020-09-15      发布日期:  2020-10-14      期的出版日期:  2020-09-15
基金资助: 国家自然科学基金项目(31671883);霍英东教育基金会高等院校青年教师基金项目(171024)
作者简介:  硕士研究生(常耀光教授为通讯作者,E-mail:changyg@ouc.edu.cn)
引用本文:    
宋艳,常耀光,薛长湖,等. 仿刺参体壁水提物中生物大分子的鉴定[J]. 食品与发酵工业, 2020, 46(17): 40-45.
SONG Yan,CHANG Yaoguang,XUE Changhu,et al. Identification of biomacromolecules in water extract of the body wall of sea cucumber Apostichopus japonicus[J]. Food and Fermentation Industries, 2020, 46(17): 40-45.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.023486  或          http://sf1970.cnif.cn/CN/Y2020/V46/I17/40
[1] KIEW P L,DON M.Jewel of the seabed:sea cucumbers as nutritional and drug candidates[J].International Journal of Food Science and Nutrition,2012,63(5):616-636.
[2] YU L,XUE C,CHANG Y,et al.Structure and rheological characteristics of fucoidan from sea cucumber Apostichopus japonicus[J].Food Chemistry.2015,180:71-76.
[3] 农业农村部渔业渔政管理局. 2019中国渔业统计年鉴[R].北京:中国农业出版社,2019.
[4] QI H,JI X,LIU S,et al.Antioxidant and anti-dyslipidemic effects of polysaccharidic extract from sea cucumber processing liquor[J].Electronic Journal of Biotechnology,2017,28:1-6.
[5] 孙昊,李楠,董秀芳,等.海参水煮液多糖提取物免疫调节活性的研究[J].食品科技,2017,42(12):180-184;190.
[6] 陈宁,赵君,李月惠,等.刺参水煮液糖蛋白组成成分分析[J].食品科学,2015,36(8):125-128.
[7] 宿玮,常耀光,薛长湖,等.海地瓜多糖中蛋白含量测定方法比较[J].食品科学,2011,32(2):201-204.
[8] DUBOIS M,GILLES K,HAMILTON JK,et al.A colorimetric method for the determination of sugars[J].Nature,1951,168(4265):167.
[9] HELRICH K E.Official methods of analysis of the Association of Official Analytical Chemists[J].Journal of Pharmaceutical Science,1975,60:414.
[10] WISNIEWSKI J,ZOUGMAN A,NAGARAJ N,et al.Universal sample preparation method for proteome analysis[J].Nature Methods,2009,6(5):359-362.
[11] FIRMINO M,WEIS S N,SOUZA J M F,et al.Label-free quantitative proteomics of rat hypothalamus under fever induced by LPS and PGE(2) [J].Journal of Proteomics,2018,187:182-199.
[12] COX J,MANN M.MaxQuant enables high peptide identification rates,individualized p.p.b.-range mass accuracies and proteome-wide protein quantification[J].Nature Biotechnology,2008,26(12):1 367-1 372.
[13] SOEDJAK H S.Colorimetric determination of carrageenans and other anionic hydrocolloids with methylene-blue[J].Analytical Chemistry,1994,66:4 514-4 518.
[14] CHANG Y,HU Y,YU L,et al.Primary structure and chain conformation of fucoidan extracted from sea cucumber Holothuria tubulosa[J].Carbohydrate Polymers,2016,136:1 091-1 097.
[15] XU X,XUE C,CHANG Y,et al.Chain conformational and physicochemical properties of fucoidans from sea cucumber[J].Carbohydrate Polymers,2016,152:433-440.
[16] FUJIWARA A,UNUMA T,OHNO K,et al.Molecular characterization of the major yolk protein of the Japanese common sea cucumber (Apostichopus japonicus) and its expression profile during ovarian development[J].Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology,2010,155(1):34-40.
[17] LI C,CHANG Y,DING J,et al.Relative expression of major yolk protein,MYP1 and MYP2,in larval development,adult tissues and intestine of sea cucumber (Apostichopus japonicas)under various temperature stress[J].Journal of Fisheries of China,2014,38:193-199.
[18] DENISE Y,MING Z F,YOSHINORI M.Egg yolk peptides up-regulate glutathione synthesis and antioxidant enzyme activities in a porcine model of intestinal oxidative stress[J].Journal of Agricultural and Food Chemistry,2010,58:7 624-7 633.
[19] DU X,WANG X,WANG S,et al.Functional characterization of Vitellogenin_N domain,domain of unknown function 1943,and von Willebrand factor type D domain in vitellogenin of the non-bilaterian coral Euphyllia ancora:Implications for emergence of immune activity of vitellogenin in basal metazoan[J].Developmental and Comparative Immunology,2017,67:485-494.
[20] SUN C,ZHANG S.Immune-relevant and antioxidant activities of vitellogenin and yolk proteins in fish[J].Nutrients,2015,7(10):8 818-8 829.
[21] SHARP A,OFFER G.The mechanism of formation of gels from myosin molecules[J].Journal of the Science of Food and Agriculture,1992,58(1):63-73.
[22] TROTTER J A,SALGADO J P,KOOB T J.Mineral content and salt-dependent viscosity in the dermis of the sea cucumber Cucumaria frondosa[J].Comparative Biochemistry and Physiology A-Physiology,1997,116(4):329-335.
[23] SAITO M,KUNISAKI N,URANO N,et al.Collagen as the major edible component of sea cucumber (Stichopus japonicus) [J].Journal of Food Science,2002,67(4):1 319-1 322.
[24] LUO L,WU M,XU L,et al.Comparison of physicochemical characteristics and anticoagulant activities of polysaccharides from three sea cucumbers[J].Marine Drugs,2013,11(2):399-417.
[25] CHANG Y,XUE C,TANG Q,et al.Isolation and characterization of a sea cucumber fucoidan-utilizing marine bacterium[J].Letters in Applied Microbiology,2010,50(3):301-307.
[26] WANG J,CHANG Y,WU F,et al.Fucosylated chondroitin sulfate is covalently associated with collagen fibrils in sea cucumber Apostichopus japonicus body wall[J].Carbohydrate Polymers,2018,186:439-444.
[27] LIU X,SUN Z,ZHANG M,et al.Antioxidant and antihyperlipidemic activities of polysaccharides from sea cucumber Apostichopus japonicus[J].Carbohydrate Polymers,2012,90(4):1 664-1 670.
[28] KARIVA Y,MULLOY B,IMAI K,et al.Isolation and partial characterization of fucan sulfates from the body wall of sea cucumber Stichopus japonicus and their ability to inhibit osteoclastogenesis[J].Carbohydrate Research,2004,339(7):1 339-1 346.
[29] COWMAN M K.Hyaluronan and hyaluronan fragments[J].Advances in Carbohydrate Chemistry and Biochemistry,2017,74:1-59.
[1] 丁文玉, 何聪芬, 刘蕾, 杨笑笑, 董坤. 草莓叶水提物对成纤维细胞合成Ⅰ型胶原及分泌骨形态发生蛋白-1的影响[J]. 食品与发酵工业, 2021, 47(9): 114-119.
[2] 程敏君, 胡锦华, 唐雪, 杨亭亭, 周鹏, 胡炜. 海参酶解物促SD大鼠皮肤创面愈合效果的研究[J]. 食品与发酵工业, 2021, 47(7): 94-101.
[3] 剧柠, 苟萌, 张彤彤. 蛋白质组学技术及其在乳及乳制品中的应用研究进展[J]. 食品与发酵工业, 2021, 47(3): 245-251.
[4] 李解, 翟秀明, 唐敏, 张维, 袁林颖, 侯渝嘉. 茶叶水提物对高脂饮食诱导小鼠胰岛素抵抗作用的研究[J]. 食品与发酵工业, 2021, 47(18): 135-140.
[5] 刘蕊琪, 宋莲军, 沈玥, 赵秋艳, 乔明武. 蒸汽爆破技术在食品大分子物质改性中的研究概述[J]. 食品与发酵工业, 2021, 47(15): 292-297.
[6] 马静, 孙璐. 蛋白质组学技术在牦牛乳研究中的应用[J]. 食品与发酵工业, 2021, 47(10): 285-290.
[7] 王瑞芳, 陈发河, 吴光斌, 谢远红. 三氧化硫吡啶法酯化修饰海参岩藻聚糖硫酸酯的研究[J]. 食品与发酵工业, 2020, 46(4): 113-117.
[8] 徐仰丽, 苏来金, 杨会成, 李瑞雪. 东海海参性腺丙酮提取物的体外功能活性分析[J]. 食品与发酵工业, 2020, 46(2): 120-125.
[9] 汪韬, 温运启, 于娇, 薛勇, 薛长湖. 富含乳酸菌的脱腥海参肽粉的制备[J]. 食品与发酵工业, 2020, 46(18): 187-191.
[10] 林琳, 孙霄, 侯虎. 贮藏温度对高温高压海参体壁组织结构变化的作用[J]. 食品与发酵工业, 2019, 45(19): 194-199.
[11] 李震, 肖秧, 甄天元, 朴美子. 海参肠道产蛋白酶菌的分离鉴定及其在海参下脚料中的应用[J]. 食品与发酵工业, 2019, 45(18): 195-201.
[12] 董建辉, 田巧基, 段素芳, 刘义凤, 李海枝, 夏凯. 燕窝提取物的抗氧化及促进表皮细胞生长活性比较[J]. 食品与发酵工业, 2019, 45(17): 73-78.
[13] 王婧媛, 王联珠, 郭莹莹, 文艺晓. 仿刺参与进口海参营养品质的比较分析[J]. 食品与发酵工业, 2019, 45(16): 250-254.
[14] 李少博, 贺稚非, 胡颖, 王泽富, 李洪军. 日龄对雄性伊拉兔肌肉蛋白质组成的影响[J]. 食品与发酵工业, 2019, 45(15): 93-99.
[15] 张劲松 , 牛宇 , 张丽珍 , 等. 黄芪对香菇菌丝体及子实体中成分的影响[J]. 食品与发酵工业, 2018, 44(2): 113-.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn