Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (1): 132-137    DOI: 10.13995/j.cnki.11-1802/ts.023705
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
唾液乳杆菌M18-6体外抗氧化功能评价及其机制探讨
董晨阳1,2,3, 张红星1,2,3, 贾宇1, 谢远红1, 刘慧1, 金君华1,2,3*
1(北京农学院 食品科学与工程学院,北京,102206)
2(食品质量与安全北京实验室(北京农学院),北京,102206)
3(农产品有害微生物及农残安全检测与控制北京重点实验室(北京农学院),北京,102206)
Evaluation of antioxidative function of Lactobacillus salivarius M18-6 in vitro and its antioxidant mechanisms
DONG Chenyang1,2,3, ZHANG Hongxing1,2,3, JIA Yu1, XIE Yuanhong1, LIU Hui1, JIN Junhua1,2,3*
1(Faculty of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China)
2(Beijing Laboratory of Food Quality and Safety, Beijing University of Agriculture, Beijing 102206, China)
3(Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing University of Agriculture, Beijing 102206, China)
下载:  HTML   PDF (3095KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 分别检测了唾液乳杆菌M18-6菌悬液、无细胞上清液及细胞内容物的体外抗氧化功能指标,包括DPPH自由基清除率、抑制亚油酸过氧化率、羟自由基(·OH)清除率、抗氧化相关酶活力等,并结合菌株基因组信息,利用实时荧光定量PCR,检测菌株中11个抗氧化功能相关的基因在mRNA上的表达水平,以期对菌株体外抗氧化功能进行全面评价,并从分子水平进一步探讨其抗氧化的机理。结果显示,唾液乳杆菌M18-6无细胞上清液清除DPPH自由基和·OH的清除能力、抑制亚油酸过氧化率的能力均显著高于鼠李糖乳酸杆菌LGG(P<0.05),在菌株无细胞上清液中检测到较强的谷胱甘肽过氧化物酶和超氧化物歧化酶活性,表明唾液乳杆菌M18-6无细胞上清液中有较强的抗氧化能力。在2.5 mmol/L H2O2胁迫下,菌株的NADH氧化酶和超氧化物歧化酶编码基因在mRNA上表达水平分别上调了6.2和4.5倍,硫氧还蛋白系列的基因(trxA1trxA2trxA3trx)和过氧化氢酶基因表达水平也均上调2倍以上,推测唾液乳杆菌M18-6可能通过上调NADH氧化酶基因与硫氧还蛋白系统相关基因表达,激活硫氧还蛋白系统,通过上调sodcat基因表达水平,提高超氧化物歧化酶和过氧化氢酶的酶活力,发挥抗氧化作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董晨阳
张红星
贾宇
谢远红
刘慧
金君华
关键词:  唾液乳杆菌  抗氧化功能  抗氧化机理  基因表达    
Abstract: This study investigated the antioxidant function of Lactobacillus salivarius M18-6 bacterial suspension, cell-free supernatant and cell contents in vitro, respectively, by testing 1,1-diphenyl-2-trinitrophenylhydrazine (DPPH) clearance rate, inhibition of linoleic acid peroxidation rate, hydroxyl radical (·OH) clearance rate, antioxidant related enzyme activity, etc. Furthermore, combined with strain genome information, this study detected the transcription level of 11 genes involved in antioxidant function using real-time fluorescence quantitative PCR. The results showed that activity of scavenging DPPH free radicals and ·OH, and inhibiting linoleic acid peroxidation rate were significantly higher than that of L.rhamnosus GG (P<0.05). Meanwhile, the glutathione peroxidase (GSH-PX) and superoxide dismutase (SOD) activities were also high in the cell-free supernatant of the strain. The results indicated that the cell-free supernatant of L. salivarius M18-6 had strong antioxidant capacity. Under 2.5 mmol/L H2O2 stress, the transcription level of the genes encoding NADH oxidase and superoxide dismutase of the L. salivarius M18-6 were up-regulated by 6.2 and 4.5 times, respectively, and the transcription level of thioredoxin series genes (trxA1, trxA2, trxA3, trx) and catalase(cat) were also up-regulated by more than 2 times. It is speculated that L. salivarius M18-6 might exhibit antioxidant effects by increasing the expression of NADH oxidase and thioredoxin to activate the thioredoxin system, and by up-regulating the expression levels of sod and cat genes to increase the activity of SOD and catalase.
Key words:  Lactobacillus salivarius    antioxidant function    antioxidant mechanism    gene expression
收稿日期:  2020-02-21      修回日期:  2020-04-14                发布日期:  2021-02-03      期的出版日期:  2021-01-15
基金资助: 北京市教育委员会科研计划一般项目(KM202010020002)
作者简介:  硕士研究生(金君华副教授为通讯作者,E-mail:jinjunhua002008@163.com)
引用本文:    
董晨阳,张红星,贾宇,等. 唾液乳杆菌M18-6体外抗氧化功能评价及其机制探讨[J]. 食品与发酵工业, 2021, 47(1): 132-137.
DONG Chenyang,ZHANG Hongxing,JIA Yu,et al. Evaluation of antioxidative function of Lactobacillus salivarius M18-6 in vitro and its antioxidant mechanisms[J]. Food and Fermentation Industries, 2021, 47(1): 132-137.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.023705  或          http://sf1970.cnif.cn/CN/Y2021/V47/I1/132
[1] 刘少敏.不同乳酸菌抗氧化能力比较及其机制的研究[D].哈尔滨:东北农业大学, 2015.
LIU S M.Research on the antioxidant ability and mechanism of different lactic acid bacteria[D].Harbin:Northeast Agricultural University, 2015.
[2] KULLISAAR T,ZILMER M,MIKELSAAR M,et al.Two antioxidative lactobacilli strains as promising probiotics[J].International journal of food microbiology,2002,72(3):215-24.
[3] ZHAI Q X,YIN R J,YU L L,et al.Screening of lactic acid bacteria with potential protective effects against cadmium toxicity[J].Food Control,2015,54:23-30.
[4] ATHINA A,MARJON B,LEON G,et al.Superoxide dismutase plays an important role in the survival of Lactobacillus sake upon exposure to elevated oxygen[J].Archives of microbiology,2001,176(2):79-88.
[5] 刘洋, 郭宇星,潘道东,等.4种乳酸菌体外抗氧化能力的比较研究[J].食品科学,2012,33(11):25-29.
LIU Y,GUO Y X,PAN D D,et al.Comparative antioxidant activity of four species of lactic acid bacteria in vitro[J].Food Science,2012,33(11):25-29.
[6] 赵吉春.植物乳杆菌抗氧化评价及抗氧化机制研究[D].无锡:江南大学,2018.
ZHAO J C.Evaluation of antioxidative activities of lactobacillus plantarum and the antioxidative mechanisms[D].Wuxi:Jiangnan University,2018.
[7] MASAKI S,TOHRU I,EMI Y,et al.Roles of thioredoxin and thioredoxin reductase in the resistance to oxidative stress in Lactobacillus casei[J].Microbiology,2012,158(4):953-962.
[8] KUMSAAR T,SONGISEPP E,AIMAPUU M,et al.Complete glutathione system in probiotic Lactobacillus fermentum ME-3[J].Applied biochemistry and microbiology,2010,46(5):481-486.
[9] PIOTR D,PAULINE H,PATRIK K,et al.Potato fiber protects the small intestinal wall against the toxic influence of acrylamide[J].Nutrition,2012,28(4):428-435.
[10] RUBIO R,JOFRE A,MARTIN B,et al.Characterization of lactic acid bacteria isolated from infant faeces as potential probiotic starter cultures for fermented sausages[J].Food Microbiology,2014,38:303-311.
[11] PAULRAJ K,PATTUKUMAR V,YUVARAJ N,et al.Production and purification of a novel exopolysaccharid from lactic acid bacterium Streptococcus phocae PI80 and its functional characteristics activity in vitro[J].Bioresource Technology:Biomass,Bioenergy,Biowastes,Conversion Technologies,Biotransformations,Production Technologies,2011,102(7):4 827-4 833.
[12] ZHANG L,LIU C H,LI D,et al.Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88[J].International Journal of Biological Macromolecules:Structure,Function and Interactions,2013,54:270-275.
[13] 陈臣. 植物乳杆菌ST-Ⅲ全基因组序列分析及其对低聚果糖代谢通路的解析[D].无锡:江南大学,2014.
CHEN C.Characterization of the complete genome sequence of Lactobacillus plantarum ST-Ⅲ and its pathways for fructooligosarccharides metabolism[D].Wuxi:Jiangnan University,2014.
[14] 吴思琪, 宋静颐,秦 倩,等.一种高效稳定的微生物总RNA提取方法[J].江苏农业学报,2017,33(3):517-523.
WU S Q,SONG J Y,QIN Q,et al.A high-efficiency and stable method for extracting total RNA from micro-organisms[J].Jiangsu Journal of Agricultural Science,2017,33(3):517-523.
[15] TANG W,ZHU Q X,LI C,et al.Molecular mechanisms and in vitro antioxidant effects of Lactobacillus plantarum MA2[J].Food Chemistry,2017,221(15):1 642-1 649.
[16] 李卫娜, 赵波,柳陈坚,等.副干酪乳杆菌胞外多糖抗氧化活性分析[J].食品工业科技,2019,40(24):34-39.
LI W N,ZHAO B,LIU C J,et al.Antioxidant activity analysis of exopolysaccharide from Lactobacillus paracasei strains[J].Science and Technology of Food Industry,2019,40(24):34-39.
[17] 王曦, 罗霞,许晓燕,等.不同乳酸菌菌株抗氧化能力的比较研究[J].食品科学,2010,31(9):197-201.
WANG X,LUO X,XU X Y,et al.Comparative studies on antioxidant activities of different lactic acid bacteria strains[J].Food Science,2010,31(9):197-201.
[18] 吴祖芳, 洪松虎,沈锡权,等.乳酸菌高抗氧化活性菌株的筛选及鉴定[J].中国食品学报,2010,10(1):73-78.
WU Z F,HONG S H,SHEN X Q,et al.Screening and identification of lactic acid bacteria stains with high antioxidant activity[J].Journal of Chinese Institute of Food Science and Technology,2010,10(1):73-78.
[19] ATHINA A,EDDY J,MARJON H,et al.Antioxidative properties of Lactobacillus sake upon exposure to elevated oxygen concentrations[J].FEMS Microbiology Letters,2001,203(1):87-94.
[20] 乔娜. 副干酪乳杆菌(Lactobacillus paracasei)HD1.7抗氧化活性的研究[D].哈尔滨:黑龙江大学,2014.
QIAO N.Study on antioxidant activity of Lactobacillus paracasei HD1.7[D].Harbin:Heilongjiang University,2014.
[21] DU Y T,ZHANG H H,ZHANG X,et al.Thioredoxin 1 is inactivated due to oxidation induced by peroxiredoxin under oxidative stress and reactivated by the glutaredoxin system[J].The Journal of biological chemistry,2013,288(45):32 241-32 247.
[22] 段希宇, 叶陵,刘成国,等.乳酸菌的抗氧化作用机制[J].微生物学杂志,2017,37(3):111-115.
DUAN Y X,YE L,LIU C G,et al.The antioxidative mechanism of lactic acid bacteria[J].Journal of Microbiology,2017,37(3):111-115.
[23] 左芳雷. 长双歧杆菌BBMN68氧胁迫应答机制的转录组学研究及差异表达基因的功能分析[D].北京:中国农业大学,2014.
ZUO F L.Transcriptomic characterization of the oxidative stress response in Bifiddobacterium longum subsp.longum BBMN68 and functional analysis of differentially expressed genes[D].Beijing:China Agricultural University,2014.
[1] 金星, 贺禹丰, 周永华, 陈晓华, 王刚, 赵建新, 张灏, 陈卫. 唾液乳杆菌CCFM 1054通过改变肠道菌群缓解空肠弯曲杆菌在小鼠体内的感染[J]. 食品与发酵工业, 2020, 46(5): 1-8.
[2] 周丽君, 杨苗苗, 魏春艳, 潘长沛, 黄时海. 唾液乳杆菌的抗氧胁迫能力及有氧发酵条件[J]. 食品与发酵工业, 2020, 46(22): 98-105.
[3] 张强, 代文婷, 李冀新, 金新文. 糖代谢对甜瓜果实后熟软化的影响[J]. 食品与发酵工业, 2020, 46(1): 112-117.
[4] 李喜明, 赵永腾, 余旭亚. 褪黑素调控缺氮胁迫下单针藻中油脂积累的影响[J]. 食品与发酵工业, 2019, 45(2): 39-44.
[5] 张强, 代文婷, 金新文. 氯化钙与1-甲基环丙烯对伽师瓜果实软化与果胶酶活性及其基因表达影响[J]. 食品与发酵工业, 2019, 45(2): 45-52.
[6] 曹森, 马超, 黄亚欣, 和岳, 巴良杰, 吉宁, 何贵红, 王瑞, 顾红艳. 1-MCP对猕猴桃后熟品质的影响[J]. 食品与发酵工业, 2019, 45(14): 184-190.
[7] 韩啸, 于雷雷, 翟齐啸, 崔树茂, 赵建新, 张灏, 田丰伟, 陈卫. 短乳杆菌和植物乳杆菌产γ-氨基丁酸及其关键基因的研究[J]. 食品与发酵工业, 2019, 45(13): 1-8.
[8] 郭立芸, 谢鑫, 梁云. 应用絮凝基因表达量分析技术评价酵母菌株的絮凝性[J]. 食品与发酵工业, 2018, 44(5): 70-75.
[9] 易美君,孔静,许昕,郁志芳. 低温贮藏期间‘长富2’果实细胞壁酶及基因表达的变化[J]. 食品与发酵工业, 2017, 43(3): 254-.
[10] 原苗苗 , 赵新节 , 孙玉霞. 低温对葡萄酒香气成分和酵母代谢的影响[J]. 食品与发酵工业, 2017, 43(12): 268-276.
[11] 汪开拓,廖云霞,韩林. 羟丙基甲基纤维素涂膜处理对采后杨梅果实品质、生理及花色苷合成的影响[J]. 食品与发酵工业, 2015, 41(1): 244-.
[12] 韩巍巍,侯俊财,曹秋阁,高梦妮,张佳秀,吴瑶,李晓静. 不同生长阶段保加利亚乳杆菌关键蛋白酶基因表达变化规律[J]. 食品与发酵工业, 2014, 40(03): 13-19.
[13] 郑宏臣,孙明哲,裴海生,孟令彩,曾文惠,张京声,刘逸寒,路福平,孙君社. 生物质降解菌系中GH11家族耐热木聚糖酶基因的克隆与鉴定[J]. 食品与发酵工业, 2013, 39(11): 12-17.
[14] 孙军涛,王洪新,吕文平,马朝阳,戴易兴. 1,3-1,4-β-葡聚糖酶基因克隆表达及其耐热性研究进展[J]. 食品与发酵工业, 2010, 36(06): 107-111,117.
[15] 赵艳,梁新乐,张虹. 大肠杆菌谷氨酸脱羧酶的结构、功能及其基因表达调控[J]. 食品与发酵工业, 2006, 32(7): 75-.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn