Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (16): 127-134    DOI: 10.13995/j.cnki.11-1802/ts.023786
  生产与科研应用 本期目录 | 过刊浏览 | 高级检索 |
基于两阶段L-谷氨酸添加的功能性红曲产酸式Monacolin K的发酵工艺优化
于卓然1, 陈程鹏1, 张耀1, 邱晓曼1, 莫晶1, 田冉1, 洪厚胜1,2*
1 南京工业大学 生物与制药工程学院,江苏 南京,211816
2 南京汇科生物工程设备有限公司,江苏 南京,210009
Optimization of fermentation process for Monacolin K acid production using functional Monascus with two-stage L-glutamic acid addition
YU Zhuoran1, CHEN Chengpeng1, ZHANG Yao1, QIU Xiaoman1, MO Jing1, TIAN Ran1, HONG Housheng1,2*
1 College of Biotechnology and pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
2 Nanjing Huike Bioengineering Equipment Co. Ltd., Nanjing 210009, China
下载:  HTML   PDF (7229KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高功能性红曲发酵产物中降脂活性物质酸式莫纳可林 K(Monacolin K)的含量,优化功能性红曲固态发酵工艺,以紫色红曲菌(CGMCC No.18110)作为发酵菌种,酸式Monacolin K作为目标产物,采用基于两阶段L-谷氨酸添加的固态发酵工艺,在单因素试验结果的基础上,利用Box-Behnken试验优化功能性红曲固态发酵工艺条件。根据单因素试验结果选择大豆粉添加量、常温发酵阶段L-谷氨酸添加量和低温发酵阶段L-谷氨酸添加量作为主要影响因素。由响应面数据分析得出最佳工艺条件为大豆粉添加量2%(质量分数)、常温发酵阶段L-谷氨酸添加量2%(质量分数)、低温发酵阶段L-谷氨酸添加量4%(质量分数)、装料量150 g、接种量15%、发酵时间22 d(常温30 ℃发酵3 d,低温20 ℃发酵19 d,并在低温发酵5 d后再次添加L-谷氨酸),此条件下发酵成品酸式Monacolin K含量达到6.848 mg/g。该实验还对发酵过程中红曲菌的形态进行了扫描电镜观察,结果显示,L-谷氨酸能影响红曲菌的菌丝体形态和生殖方式。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于卓然
陈程鹏
张耀
邱晓曼
莫晶
田冉
洪厚胜
关键词:  功能性红曲  酸式Monacolin K  L-谷氨酸  响应面分析  扫描电镜    
Abstract: To increase the yield of fermentation product Monacolin K acid, a hypolipidemic agent, the solid-state fermentation process of functional Monascus was optimized. Fermentation with Monascus purpureus CGMCC No.18110 to produce Monacolin K acid was conducted by two-stage L-glutamic acid addition. Based on the results of single factor test, Box-Behnken test was performed to optimize the fermentation process by functional Monascus. According to the single factor test results, the amount of soybean meal and L-glutamic acid added at two-stage fermentation were selected as main influencing factors. Through a response surface test, the optimal fermentation conditions were determined to be 2% soybean meal, 2% L-glutamic acid at normal temperature(30 ℃) fermentation stage, 4% L-glutamic acid at low temperature fermentation stage, 150 g of substrates, 15% inoculum, and fermentation time of 22 d (3 d at normal temperature fermentation stage, then 19 d at low temperature(20 ℃) fermentation stage, with L-glutamic acid addition at the 5th day at low temperature stage). Under these conditions, the yield of Monacolin K acid was 6.848 mg/g. Morphological features of Monascus mycelia during the fermentation process were observed using a scanning electron microscope (SEM). SEM results revealed that L-glutamic acid affects the mycelia and the reproduction of Monascus. Compared with the traditional solid-state fermentation process, the process with two-stage L-glutamic acid addition is promising for large scale production of Monacolin K acid.
Key words:  functional Monascus    Monacolin K acid    L-glutamic acid    response surface methodology    scanning electron microscope
收稿日期:  2020-03-01      修回日期:  2020-03-30           出版日期:  2020-08-25      发布日期:  2020-09-17      期的出版日期:  2020-08-25
基金资助: 国家高技术研究发展计划项目(2012AA021201)
作者简介:  硕士(洪厚胜教授为通讯作者,E-mail:hhs@njtech.edu.cn)
引用本文:    
于卓然,陈程鹏,张耀,等. 基于两阶段L-谷氨酸添加的功能性红曲产酸式Monacolin K的发酵工艺优化[J]. 食品与发酵工业, 2020, 46(16): 127-134.
YU Zhuoran,CHEN Chengpeng,ZHANG Yao,et al. Optimization of fermentation process for Monacolin K acid production using functional Monascus with two-stage L-glutamic acid addition[J]. Food and Fermentation Industries, 2020, 46(16): 127-134.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.023786  或          http://sf1970.cnif.cn/CN/Y2020/V46/I16/127
[1] 李钟庆, 晓暾, 郭芳. 综观红曲与红曲菌(精)[M]. 北京:中国轻工业出版社, 2009.
[2] WEI L U, XIANMENG X U. Research status and application prospects of Monascus sp.[J]. 农业科学与技术(英文版), 2015,16(1): 192-196.
[3] LIN C H, LIN T H, PAN T M. Alleviation of metabolic syndrome by monascin and ankaflavin: The perspective of Monascus functional foods[J]. Food & Function, 2017,8(6):2 102-2 109.
[4] ENDO A. Monacolin K: A new hypocholesterolemic agent produced by a Monascus species[J]. The Journal of Antibiotics, 1979, 32(8): 852-854.
[5] 赵秀举, 刘志国. 红曲洛伐他汀发酵条件优化及降脂功能[J]. 中国酿造, 2014,33(1):32-35.
[6] LI X M, SHEN X H, DUAN Z W, et al. Advances on the pharmacological effects of red yeast rice[J]. Chinese Journal of Natural Medicines, 2011,9(3):161-166.
[7] 于卓然, 洪厚胜. 功能性红曲Monacolin K产量控制策略的研究进展[J]. 食品与发酵工业, 2019,45(3):292-296.
[8] 曾化伟,任晓婕,戴传云,等.红曲霉固体发酵生产洛伐他汀条件的研究[J].中央民族大学学报(自然科学版),2018,27(1):5-10.
[9] 刘畅.红曲霉洛伐他汀生物合成相关基因克隆与分析[D]. 昆明:昆明理工大学, 2011.
[10] CHEN W, HE Y, ZHOU Y, et al. Edible filamentous fungi from the species Monascus: Early traditional fermentations, modern molecular biology, and future genomics[J]. Comprehensive Reviews in Food Science & Food Safety, 2015,14(5):555-567.
[11] CHEN Y P, TSENG C P, LIAW L L, et al. Cloning and characterization of Monacolin K biosynthetic gene cluster from Monascus pilosus[J]. Journal of Agricultural & Food Chemistry, 2008,56(14):5 639-5 646.
[12] AMES B D, NGUYEN C, BRUEGGER J, et al. Crystal structure and biochemical studies of the trans-acting polyketide enoyl reductase LovC from lovastatin biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(28):11 144-11 149.
[13] ZHANG C,LIANG J,YANG L, et al. Glutamic acid promotes Monacolin K production and Monacolin K biosynthetic gene cluster expression in Monascus[J]. Amb Express, 2017,7(1):22.
[14] WANG T H, LIN T F. Monascus rice products[J]. Adv Food Nutr Res, 2007,53:123-159.
[15] TAN J, CHU J, SHI W, et al. High-throughput screening strategy used for enhanced production of pigment by Monascus purpureus D39-4[J]. Food Science & Biotechnology, 2012,21(6):1 603-1 610.
[16] 陈慎, 黄颖颖, 陆东和, 等. 外加营养源对红曲霉固态发酵产莫纳可林K和洛伐他汀的影响[J]. 中国食品添加剂, 2017(9):102-113.
[17] ZHANG B B, XING H, JIANG B, et al. Using millet as substrate for efficient production of monacolin K by solid-state fermentation of Monascus ruber[J]. Journal of Bioscience & Bioengineering, 2017,125(3):333-338.
[18] TSUKAHARA M, SHINZATO N, TAMAKI Y, et al. Red yeast rice fermentation by selected Monascus sp. with deep-red color, lovastatin production but no citrinin, and effect of temperature-shift cultivation on lovastatin production.[J]. Appl Biochem Biotechnol, 2009,25(2):476-482.
[19] 高慧民.红曲菌的分类鉴定及其固态发酵产孢条件的优化[D]. 天津:天津科技大学, 2015.
[20] 姜冰洁.红曲菌固态发酵高产Monacolin K的研究[D]. 无锡:江南大学, 2015.
[21] 陆磊.产Monacolin K的功能性红曲固态发酵工艺优化研究[D]. 济南:齐鲁工业大学, 2014.
[22] 李蒽蕙,易涛,彭立军,等.辐照对红曲米中桔霉素及Monacolin K含量的影响[J].食品科技,2016,41(4):266-270.
[23] 马祖兵, 孙强, 李小芳, 等. 红曲降脂成分他汀类物质检测方法的研究进展[J]. 中国实验方剂学杂志, 2017,23(23):228-234.
[24] XU B J, WANG Q, JIA X, et al. Enhanced lovastatin production by solid state fermentation of Monascus ruber[J]. Biotechnology & Bioprocess Engineeing, 2005,10(1):78-84.
[25] FENG Y, SHAO Y, ZHOU Y, et al. Effects of glycerol on pigments and monacolin K production by the high-monacolin K-producing but citrinin-free strain,Monascus pilosus MS-1[J]. European Food Research & Technology, 2015,240(3):635-643.
[26] 张怡.基于代谢途径的前体对美伐他汀生物合成的影响[D]. 重庆:西南大学, 2008.
[27] HUANG J, LIAO N, LI H. Linoleic acid enhance the production of Moncolin K and red pigments in Monascus ruber by activating mokH and mokA, and by accelerating cAMP-PkA pathway[J]. International Journal of Biological Macromolecules, 2018,109:950-954.
[28] HENDRICKSON L, DAVIS C R, ROACH C, et al. Lovastatin biosynthesis in Aspergillus terreus: Characterization of blocked mutants, enzyme activities and a multifunctional polyketide synthase gene[J]. Chem Bio, 1999,6(7):429-439.
[29] 吴芳彤.高产洛伐他汀红曲菌的分离鉴定及其红曲发酵条件的优化[D]. 福州:福建农林大学, 2014.
[30] LIN L, WU S, LI Z, et al. High expression level of mok E enhances the production of Monacolin K in Monascus[J]. Food Biotechnology, 2018,32(1):35-46.
[31] 林琳, 王昌禄, 李贞景, 等. mok E基因过表达对红曲霉Monacolin K产量、菌丝及孢子形态的影响[J]. 食品科学, 2018,39(8):45-49.
[32] JI Y K, KIM H, OH J, et al. Characteristics of Monascus sp. isolated from Monascus,fermentation products[J]. Food Science & Biotechnology, 2010,19(5):1 151-1 157.
[1] 刘景阳, 刘云鹏, 徐庆阳. 谷氨酸全营养流加发酵新工艺[J]. 食品与发酵工业, 2021, 47(7): 14-20.
[2] 李超, 李保国, 朱传辉, 孟祥. 茶多酚磁性微胶囊的制备条件优化和性能分析[J]. 食品与发酵工业, 2020, 46(9): 128-134.
[3] 石兵艳, 李祥, 刘毅, 王芸. 八月瓜果皮中常春藤皂苷元水解工艺优化及图谱分析[J]. 食品与发酵工业, 2020, 46(2): 239-245.
[4] 尹旭敏, 刘月如, 杨茂, 李晓英, 曾志红, 曾小峰, 商桑. 微细化薯渣粉对小麦面团特性的影响[J]. 食品与发酵工业, 2020, 46(13): 190-195.
[5] 游茂兰, 覃小丽, 段娇娇, 刘雄. 超声-微波协同提取青稞β-葡聚糖[J]. 食品与发酵工业, 2019, 45(8): 178-183.
[6] 王冉冉, 赵欣, 邢亚阁, 黎芳, 魏洋, 易若琨, 牛跃庭. 棕榈油和蜂蜡基焙烤专用脱模剂的制备[J]. 食品与发酵工业, 2019, 45(7): 250-256.
[7] 于卓然, 洪厚胜. 功能性红曲Monacolin K产量控制策略的研究进展[J]. 食品与发酵工业, 2019, 45(3): 288-292.
[8] 刘子菲, 路苹, 高子乔, 贾梅杰, 翟希川, 林德慧, 杨兴斌. 水解制备细菌纤维素纳米纤维及纳米纤维稳定的Pickering乳液特性[J]. 食品与发酵工业, 2019, 45(22): 76-82.
[9] 谭属琼, 黄可, 刘雄, 谢勇武. 薯渣再生纤维素及薯渣纤维素接枝丙烯酸的优化[J]. 食品与发酵工业, 2019, 45(20): 222-231.
[10] 章雪琴 , 吉宏武 , 张迪 , 等. 南极磷虾微生物复合发酵制备呈味基料的工艺优化[J]. 食品与发酵工业, 2018, 44(3): 107-.
[11] 高慧娟 , 冯九海 , 韩玉琦 , 等. 富硒荷叶离褶伞菌丝体中硒多糖提取工艺的优化及红外光谱分析[J]. 食品与发酵工业, 2018, 44(3): 151-.
[12] 杨柳, 覃小丽, 李依灿, 钟金锋, 曾凡坤. 超声处理对肾豆蛋白乳化活性和结构的影响[J]. 食品与发酵工业, 2018, 44(11): 117-123.
[13] 张涛, 余林翠, 吴鹏, 等. 响应面法优化一种营养面糊工艺[J]. 食品与发酵工业, 2018, 44(1): 185-.
[14] 王琪,李文亚. 晋西北酸粥发酵工艺的研究[J]. 食品与发酵工业, 2017, 43(9): 137-.
[15] 丁含,梁赢,朱莉,高敏杰,林莉,詹晓北. 发酵液中水溶性热凝胶提取工艺的优化[J]. 食品与发酵工业, 2017, 43(6): 109-.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn