Research progress of bioactive peptides in aquatic products
CAI Yanping1,2, YU Xiaowan1,2, ZHANG Qingchun1,2, HE Xiaoting1,2, SHAO Tianlun1,2, HAN Tiao1,2, LIU Yefeng4, DING Yuting1,2,3, LIU Jianhua1,2,3*
1 College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China 2 National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China 3 Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University,Dalian 116034, China 4 Zhejiang Yangshengtang Natural Medicine Research Institute Co., Ltd, Hangzhou 310024, China
Abstract: There are many types of aquatic products, of which the amino acids ratio is close to humans. Compared to bioactive peptides from terrestrial animal and plant proteins, bioactive peptides from aquatic products exhibit their own advantages, which have attracted widespread attention of researchers and become a research hotspot in the food industry in recent years. In this review, the basic concepts, research status, preparation methods and structure-activity relationship of aquatic bioactive peptides were summarized. Taking fish, shellfish and crustaceans as examples, the research progress of antioxidant, anti-hypertensive, and anti-microbial bioactive peptides were comprehensively described. Finally, the common problems in the current development of bioactive peptides from aquatic products were summarized and prospected, which could provide a reference for the further development and utilization of bioactive peptides from aquatic products.
[1] ADRIÁN SÁNCHEZ, ALFREDO VÁZQUEZ. Bioactive peptides: A review[J]. Food Quality and Safety, 2017, 1(1): 29-46. [2] FAN X, BAI L, ZHU L, et al. Marine algae-derived bioactive peptides for human nutrition and health[J]. Journal of Agricultural and Food Chemistry, 2014, 62 (38): 9 211-9 222. [3] 吕静琳,王宾香,郑天凌.海洋细菌活性蛋白、活性肽研究的若干新进展[J].微生物学报,2010,50(9):1 121-1 128. [4] HIMAYA S W A, NGO D-H, RYU B, et al. An active peptide purified from gastrointestinal enzyme hydrolysate of Pacific cod skin gelatin attenuates angiotensin-1 converting enzyme (ACE) activity and cellular oxidative stress[J]. Food Chemistry, 2012, 132(4): 1 872-1 882. [5] TAHERI A, ANVAR S A A, AHARI H, et al. Comparison the functional properties of protein hydrolysates from poultry by-products and rainbow trout (Onchorhynchus mykiss) viscera[J]. Iranian Journal of Fisheries Sciences, 2013,12(1): 154-169. [6] JEMIL I, JRIDI M, NASRI R, et al. Functional, antioxidant and antibacterial properties of protein hydrolysates prepared from fish meat fermented by Bacillus subtilis A26[J]. Process Biochemistry, 2014, 49 (1): 963-972. [7] NALINANON S, BENJAKUL S, KISHIMURA H, et al. Functionalities and antioxidant properties of protein hydrolysates from the muscle of ornate threadfin bream treated with pepsin from skipjack tuna[J]. Food Chemistry, 2011, 124 (1): 1 354-1 362. [8] HALIMNRA, YUSOF H M, SARBON N M. Functional and bioactive properties of fish protein hydolysates and peptides: A comprehensive review[J]. Trends in Food Science & Technology,2016,51(1):24-33. [9] NGO D H, VO T S, NGO D N, et al. Biological activities and potential health benefits of bioactive peptides derived from marine organisms[J]. International Journal of Biological Macromolecules, 2012, 51(4):378-383. [10] CHALAMAIAH M, DINESH KUMAR B, HEMALATHA R, et al. Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review[J]. Food Chemistry, 2012, 135 (4): 3 020-3 038. [11] LEE Y, PHAT C, HONG S C. Structural diversity of marine cyclic peptides and their molecular mechanisms for anticancer, antibacterial, antifungal, and other clinical applications[J]. Peptides, 2017,95:94-105. [12] ISHAK N H, SARBON N M. A review of protein hydrolysates and bioactive peptides deriving from wastes generated by fish processing[J]. Food and Bioprocess Technology, 2018,11(1): 2-16. [13] 吴燕燕, 马永凯, 李来好, 等. 合浦珠母贝源抗氧化肽的研究进展[J]. 食品工业科技, 2017, 38 (9):381-385. [14] SAMPATH KUMAR N S,NAZEER R A, JAIGANESH R. Purification and identification of antioxidant peptides from the skin protein hydrolysate of two marine fishes, horse mackerel (Magalaspis cordyla) and croaker (Otolithes ruber)[J]. Amino Acids,2012, 42 (5): 1 641-1 649. [15] WANG Q, LI W, HE Y, et al. Novel antioxidative peptides from the protein hydrolysate of oysters (Crassostrea talienwhanensis)[J]. Food Chemistry, 2014, 145: 991-996. [16] 黄湛媛, 李丽, 熊宇飞, 等. 超声辅助竹节虾头酶解及抗氧化肽分离研究[J]. 核农学报, 2017, 31 (8):1 556-1 566. [17] SINÉAD L, RPAUL R, CATHERINE S. Marine bioactives as functional food ingredients: Potential to reduce the incidence of chronic diseases[J]. Marine Drugs, 2011, 9 (6):1 056-1 100. [18] ZHANG X, CAO D, SUN X, et al. Preparation and identification of antioxidant peptides from protein hydrolysate of marine alga Gracilariopsis lemaneiformis[J]. Journal of Applied Phycology, 2019, 31(4): 2 585-2 596. [19] SHEIH I C, FANG T J, WU T K, et al. Anticancer and antioxidant activities of the peptide fraction from algae protein in waste[J]. Journal of Agricultural and Food Chemistry, 2010, 58(2): 1 202-1 207. [20] HSU KUO-CHIANG. Purification of antioxidative peptides prepared from enzymatic hydrolysates of tuna dark muscle by-product[J]. Food Chemistry, 2010, 122 (1): 42-48. [21] WU R, WU C, LIU D, et al. Antioxidant and anti-freezing peptides from salmon collagen hydrolysate prepared by bacterial extracellular protease[J]. Food Chemistry, 2018, 248(1): 346-352. [22] DAI-HUNG N, KYONG-HWA K, BOMI R, et al. Angiotensin-I converting enzyme inhibitory peptides from antihypertensive skate (Okamejei kenojei) skin gelatin hydrolysate in spontaneously hypertensive rats[J]. Food Chemistry, 2015, 174(1): 37-43. [23] CHEUNG H S, WANG F L, ONDETTI M A, et al. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence[J]. Journal of Biological Chemistry, 1980, 255 (2):401-407. [24] 吴靖娜, 许永安, 王茵, 等. 罗非鱼鱼皮胶降血压肽的初步分离及性质研究[J]. 食品工业, 2012, 33(11):90-93. [25] WANG J, HU J, CUI J, et al. Purification and identification of a ACE inhibitory peptide from oyster proteins hydrolysate and the antihypertensive effect of hydrolysate in spontaneously hypertensive rats[J]. Food Chemistry, 2008, 111 (2):302-308. [26] LIU P, LAN X, YASEEN M, et al. Purification, characterization and evaluation of inhibitory mechanism of ACE inhibitory peptides from pearl oyster (Pinctada fucata martensii) meat protein hydrolysate[J]. Marine Drugs, 2019, 17 (8): 463-476. [27] 李锐, 孙玉林, 王林, 等. 克氏原螯虾虾头模拟胃肠道消化产物中ACE抑制肽的分离纯化与鉴定[J]. 食品与发酵工业, 2019, 45 (6):139-146. [28] 朱国萍. 凡纳滨对虾虾头自溶制备降血压肽的研究[D]. 湛江: 广东海洋大学, 2010. [29] KO S C, KANG N, KIM E, et al. A novel angiotensin I-converting enzyme (ACE) inhibitory peptide from a marine chlorella ellipsoidea and its antihypertensive effect in spontaneously hypertensive rats[J]. Process Biochemistry, 2012, 47 (12):2 005-2 011. [30] 姚兴存, 蒋栋磊, 盘赛昆, 等. 条斑紫菜蛋白酶解物降血压活性[J]. 食品与发酵工业, 2011, 37 (2):62-64. [31] ADMASSU H, GASMALLA M A A, YANG R, et al.Bioactive peptides derived from seaweed protein and their health benefits: Antihypertensive, antioxidant, and antidiabetic properties[J]. Journal of Food Science, 2018, 83 (1): 6-16. [32] BALTI R, BOUGATEF A, SILA A, et al. Nine novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) muscle protein hydrolysates and antihypertensive effect of the potent active peptide in spontaneously hypertensive rats[J]. Food Chemistry, 2015, 170(1): 519-525. [33] LEE S H, KIM S J, LEE Y S, et al. De novo generation of short antimicrobial peptides with simple amino acid composition[J]. Regulatory Peptides, 2011, 166 (1-3):36-41. [34] SUN B J, XIE H X, SONG Y, et al. Gene structure of an antimicrobial peptide from mandarin fish, Siniperca chuatsi (Basilewsky):Suggests that moronecidins and pleurocidins belong in one family: The piscidins[J]. Journal of Fish Diseases, 2010, 30 (6):335-343. [35] 潘燕秋. 大弹涂鱼抗菌肽hepcidin基因的分子克隆与表达研究[D]. 深圳: 深圳大学, 2016. [36] 赵华, 张艳艳, 汤加勇, 等. 重组鲢鱼抗菌肽parasinⅠ原核表达、纯化与抗菌活性[J]. 动物营养学报, 2012, 24 (9):1 731-1 736. [37] CHRISTELLE L, NICOLE O, PHILIPPE S, et al. Characterization and Ion channel activities of novel antibacterial proteins from the skin mucosa of carp(Cyprinus carpio)[J]. FEBS Journal, 1996, 240(1):143-149. [38] 丁云超, 张士璀. 海洋动物抗菌肽研究进展[J]. 中国海洋药物, 2013, 32 (6):87-96. [39] 宋宏霞. 紫贻贝(Mytilus edulis)抗菌肽的研究[D]. 青岛: 中国海洋大学, 2007. [40] SCHNAPP D, KEMP G D, SMITH V J. Purification and characterization of a proline-rich antibacterial peptide, with sequence similarity to bactenecin-7, from the haemocytes of the shore crab, carcinus maenas[J]. European Journal of Biochemistry, 1996, 240 (3):532-539. [41] EVANS E E, CUSHING J E, SAWYER S, et al. Induced bactericidal response in the California spiny lobster Panulirus interruptus[J]. Proceedings of the Society for Experimental Biology & Medicine Society for Experimental Biology & Medicine, 1969, 132 (1):111-114. [42] AKETAGAWA J, MIYATA T, OHTSUBO S, et al. Primary structure of limulus anticoagulant anti-lipopolysaccharide factor[J]. Journal of Biological Chemistry, 1986, 261 (16):7 357-7 358. [43] ENRIQUE D L V, O′LEARY N A, SHOCKEY J E, et al. Anti-lipopolysaccharide factor in Litopenaeus vannamei (LvALF): A broad spectrum antimicrobial peptide essential for shrimp immunity against bacterial and fungal infection[J]. Molecular Immunology, 2008, 45 (7):1 916-1 925. [44] CHI C F, HU F Y, WANG B, et al. Antioxidant and anticancer peptides from the protein hydrolysate of blood clam (Tegillarca granosa) muscle[J]. Journal of Functional Foods,2015, 15(1): 301-313. [45] 王竹君. 螺旋藻抗肿瘤肽的分离及其活性研究[D]. 广州: 华南理工大学, 2015. [46] JUNG W K, KIM S K. Isolation and characterisation of an anticoagulant oligopeptide from blue mussel, Mytilus edulis[J]. Food Chemistry, 2009, 117 (4): 687-692. [47] FORGHANI B, EBRAHIMPOUR A, BAKAR J, et al. Enzyme hydrolysates from stichopus horrens as a new source for angiotensin-converting enzyme inhibitory peptides[J]. Evidence-Based Complementary and Alternative Medicine, 2012,1(1):9-19. [48] FATEMEH M, MASOMEH G, ABDUL S B, et al. ACE inhibitory activity of pangasius catfish (Pangasius sutchi) skin and bone gelatin hydrolysate[J]. Journal of Food Science and Technology, 2014, 51(9): 1 847-1 856. [49] WIRIYAPHAN C, CHITSOMBOON B, YONGSAWADIGUL J. Antioxidant activity of protein hydrolysates derived from threadfin bream surimi byproducts[J]. Food Chemistry, 2012, 132(1):104-111. [50] PICOT L, RAVALLEC R, FOUCHEREAU-PERON M, et al. Impact of ultrafiltration and nanofiltration of an industrial fish protein hydrolysate on its bioactive properties[J]. Journal of Science and Food Agriculture, 2010, 90 (11): 1 819-1 826. [51] SARMADI B H, ISMAIL A. Antioxidative peptides from food proteins: A review[J]. Peptides, 2010, 31:1 949-1 956. [52] KIM S E, MENDIS E. Bioactive compounds from marine processing byproducts: A review[J]. Food Research International, 2006, 39 (4): 383-393. [53] SCHURINK M, VAN BERKEL W J, WILLEM J H, et al. Novel peptides with tyrosinase inhibitory activity[J]. Peptides, 2007, 28 (3): 485-495. [54] CHI C F, CAO Z H, WANG B, et al. Antioxidant and functional properties of collagen hydrolysates from spanish mackerel skin as influenced by average molecular weight[J]. Molecules, 2014, 19(1): 11 211-11 230. [55] UMAYAPARVATHI S, MEENAKSHI S, VIMALRAJ V, et al. Antioxidant activity and anticancer effect of bioactive peptide from enzymatic hydrolysate of oyster (Saccostrea cucullata)[J]. Biomedicine & Preventive Nutrition, 2014, 4(3): 343-353. [56] ZHAO Y, LI B, LIU Z, et al. Antihypertensive effect and purification of an ACE inhibitory peptide from sea cucumber gelatin hydrolysate[J]. Process Biochemistry, 2007, 42 (12): 1 586-1 591. [57] KAO M H, FLETCHER G L, WANG N C, et al. The relationship between molecular weight and antifreeze polypeptide activity in marine fish[J]. Canadian Journal of Zoology, 2011, 64(3):578-582.