Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (17): 271-276    DOI: 10.13995/j.cnki.11-1802/ts.023897
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
活性氧在果实成熟和衰老中的作用及调控机制
李秋雨1,2, 曾凯芳1,2, 姚世响1,2*
1(西南大学 食品科学学院,重庆,400715)
2(西南大学 食品贮藏与物流研究中心,重庆,400715)
Effect of reactive oxygen species on fruit ripening and senescence and the relevant mechanism
LI Qiuyu1,2, ZENG Kaifang1,2, YAO Shixiang1,2*
1(College of Food Science,Southwest University,Chongqing 400715,China)
2(Food Storage and Logistics Research Center,Southwest University, Chongqing 400715, China)
下载:  HTML   PDF (1024KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 活性氧在果实成熟及衰老阶段含量呈总体升高,且先后出现两个高峰的动态变化特征。近10年研究逐渐揭示了活性氧在果实成熟及衰老中扮演的重要调控功能。该文从活性氧在植物生长发育和抗逆中的作用、在果实成熟及衰老过程中的动态变化、参与调控果实成熟与衰老、调控果实成熟与衰老的机制、稳态调控技术在延缓果实成熟及衰老中的应用等5方面进行综述。并对该领域未来的研究方向进行展望,以期给相关学者提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李秋雨
曾凯芳
姚世响
关键词:  活性氧  果实  成熟  衰老  分子机制    
Abstract: During fruit ripening and senescence, reactive oxygen species (ROS) gradually increased in content with two independent peaks. Over the past decade, the research revealed that ROS maight play a regulatory role in fruit ripening and senescence. Hence, the present paper reviewed the current filed from the following aspects: the effect of ROS on plant growth, development and stress tolerance; dynamic changes in ROS homeostasis during fruit ripening and senescence; the regulatory role of ROS on fruit ripening and senescence; the underlying molecular mechanism; application of those approaches modulating ROS homeostasis to delay fruit ripening and senescence. Finally, it proposed some important directions for the current filed and hoped to provide valuable suggestions for the research community.
Key words:  reactive oxygen species    fruit    ripening    senescence    molecular mechanism
收稿日期:  2020-03-09      修回日期:  2020-04-20           出版日期:  2020-09-15      发布日期:  2020-10-14      期的出版日期:  2020-09-15
基金资助: 国家自然科学基金项目(31601520和31972131);中央高校基本科研业务费项目(XDJK2019B061)
作者简介:  硕士研究生(姚世响副教授为通讯作者,ysx2015@swu.edu.cn)
引用本文:    
李秋雨,曾凯芳,姚世响. 活性氧在果实成熟和衰老中的作用及调控机制[J]. 食品与发酵工业, 2020, 46(17): 271-276.
LI Qiuyu,ZENG Kaifang,YAO Shixiang. Effect of reactive oxygen species on fruit ripening and senescence and the relevant mechanism[J]. Food and Fermentation Industries, 2020, 46(17): 271-276.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.023897  或          http://sf1970.cnif.cn/CN/Y2020/V46/I17/271
[1] MITTLER R.ROS are good[J].Trends in Plant Science,2017,22(1):11-19.
[2] WASZCZAK C,CARMODY M,KANGASJARVI J.Reactive oxygen species in plant signaling[J].Annual Review of Plant Biology,2018,69:209-236.
[3] FOREMAN J,DEMIDCHIK V,BOTHWELL J H F,et al.Reactive oxygen species produced by NADPH oxidase regulate plant cell growth[J].Nature,2003,422(6930):442-446.
[4] MANGANO S,JUÁREZ S P D,ESTEVEZ J M.ROS regulation of polar growth in plant cells[J].Plant Physiology,2016,171(3):1 593-1 605.
[5] LU D,WANG T,PERSSON S,et al.Transcriptional control of ROS homeostasis by KUODA1 regulates cell expansion during leaf development[J].Nature Communications,2014,5:3767.
[6] TSUKAGOSHI H,BUSCH W,BENFEY P N.Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root[J].Cell,2010,143(4):606-616.
[7] YAMADA M,HAN X,BENFEY P N.RGF1 controls root meristem size through ROS signalling[J].Nature,2020,577(7788):85-88.
[8] ACHARD P,RENOU J P,BERTHOMÉ R,et al.Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species[J].Current Biology,2008,18(9):656-660.
[9] MIAO Y,LV D,WANG P,et al.An Arabidopsis glutathione peroxidase functions as both a redox transducer and ascavenger in abscisic acid and drought stress responses[J].The Plant Cell,2006,18(10):2 749-2 766.
[10] SCHMIDT R,MIEULET D,HUBBERTEN H M,et al.Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice[J].The Plant Cell,2013,25(6):2 115-2 131.
[11] PENG J,LI Z,WEN X,et al.Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis[J].PLoS Genetics,2014,10(10):e1 004 664.
[12] EINSET J,WINGE P,BONES A.ROS signaling pathways in chilling stress[J].Plant Signaling and Behavior,2007,2(5):365-367.
[13] MUNOZ P,MUNNE-BOSCH S.Photo-oxidative stress during leaf,flower and fruit development[J].Plant Physiology,2018,176(2):1 004-1 014.
[14] LOKDARSHI A,GUAN J,URQUIDI-CAMACHO R A,et al.Light activates the translational regulatory kinase GCN2 via reactive oxygen species emanating from the chloroplast[J].Plant Cell,2020,32(4):1 161-1 178.
[15] TIAN S,QIN G,LI B.Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity[J].Plant Molecular Biology,2013,82(6):593-602.
[16] DECROS G,BALDET P,BEAUVOIT B,et al.Get the balance right:ROS homeostasis and redox signalling in fruit[J].Frontiers in Plant Science,2019,10:1091.
[17] HUANG R,XIA R,HU L,et al.Antioxidant activity and oxygen-scavenging system in orange pulp during fruit ripening and maturation[J].Scientia Horticulturae,2007,113(2):166-172.
[18] LÓPEZA P,GOCHICOA M T N,FRANCO A R.Activities of antioxidant enzymes during strawberry fruit development and ripening[J].Biologia Plantarum,2010,54(2):349-352.
[19] MONDAL K,MALHOTRA S P,JAIN V,et al.Oxidative stress and antioxidant systems in guava (Psidium guajava L.) fruits during ripening[J].Physiology and Molecular Biology of Plants,2009,15(4):327-334.
[20] MONDAL K,SHARMA N S,MALHOTRA S P,et al.Antioxidant systems in ripening tomato fruits[J].Biologia Plantarum,2004,48(1):49-53.
[21] KAN J,WANG H,JIN C,et al.Changes of reactive oxygen species and related enzymes in mitochondria respiratory metabolism during the ripening of peach fruit[J].Agricultural Sciences in China,2010,9(1):138-146.
[22] CAMEJO D,MARTI M C,ROMAN P,et al.Antioxidant system and protein pattern in peach fruits at two maturation stages[J].Journal of Agricultural and Food Chemistry,2010,58(20):11 140-11 147.
[23] PALMA J M,SEVILLA F,JIMENEZ A,et al.Physiology of pepper fruit and the metabolism of antioxidants:chloroplasts,mitochondria and peroxisomes[J].Annals of Botany,2015,116(4):627-636.
[24] YANG X,XIE J,WANG F,et al.Comparison of ascorbate metabolism in fruits of two citrus species with obvious difference in ascorbate content in pulp[J].Journal of Plant Physiology,2011,168(18):2 196-2 205.
[25] DONG Y,LIU L,ZHAO Z,et al.Effects of 1-MCP on reactive oxygen species,polyphenol oxidase activity,and cellular ultra-structure of core tissue in ‘Yali’ pear (Pyrus bretschneideri Rehd.) during storage[J].Horticulture,Environment,and Biotechnology,2015,56(2):207-215.
[26] LIN Y,LIN Y,LIN H,et al.Inhibitory effects of propyl gallate on browning and its relationship to active oxygen metabolism in pericarp of harvested longan fruit[J].LWT-Food Science and Technology,2015,60(2):1 122-1 128.
[27] GAO H,ZHANG Z K,CHAI H K,et al.Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit[J].Postharvest Biology and Technology,2016,118:103-110.
[28] XIA Y,CHEN T,QIN G,et al.Synergistic action of antioxidative systems contributes to the alleviation of senescence in kiwifruit[J].Postharvest Biology and Technology,2016,111:15-24.
[29] ZHU Z,CHEN Y,SHI G,et al.Selenium delays tomato fruit ripening by inhibiting ethylene biosynthesis and enhancing the antioxidant defense system[J].Food Chemistry,2017,219:179-184.
[30] ZHANG Y,HUBER D J,HU M,et al.Delay of postharvest browning in litchi fruit by melatonin via the enhancing of antioxidative processes and oxidation repair[J].Journal of Agricultural and Food Chemistry,2018,66(28):7 475-7 484.
[31] LI T,SHI D,WU Q,et al.Sodium para-aminosalicylate delays pericarp browning of litchi fruit by inhibiting ROS-mediated senescence during postharvest storage[J].Food Chemistry,2019,278:552-559.
[32] WANG B,ZHU S.Pre-storage cold acclimation maintained quality of cold-stored cucumber through differentially and orderly activating ROS scavengers[J].Postharvest Biology and Technology,2017,129:1-8.
[33] SONG H,YUAN W,JIN P,et al.Effects of chitosan/nano-silica on postharvest quality and antioxidant capacity of loquat fruit during cold storage[J].Postharvest Biology and Technology,2016,119:41-48.
[34] GE Y,DUAN B,LI C,et al.γ-Aminobutyric acid delays senescence of blueberry fruit by regulation of reactive oxygen species metabolism and phenylpropanoid pathway[J].Scientia Horticulturae,2018,240:303-309.
[35] BELOUAH I,NAZARET C,PETRIACQ P,et al.Modeling protein destiny in developing fruit[J].Plant Physiology,2019,180(3):1 709-1 724.
[36] LIN Y,LIN Y,LIN H,et al.Hydrogen peroxide-induced pericarp browning of harvested longan fruit in association with energy metabolism[J].Food Chemisty,2017,225:31-36.
[37] XU L,YUE Q,XIANG G,et al.Melatonin promotes ripening of grape berry via increasing the levels of ABA,H2O2,and particularly ethylene[J].Horticulture Research,2018,5(1):1-11.
[38] ALHAGDOW M,MOUNET F,GILBERT L,et al.Silencing of the mitochondrial ascorbate synthesizing enzyme L-galactono-1,4-lactone dehydrogenase affects plant and fruit development in tomato[J].Plant Physiology,2007,145(4):1 408-1 422.
[39] STEVENS R G,BALDET P,BOUCHET J P,et al.A systems biology study in tomato fruit reveals correlations between the ascorbate pool and genes involved in ribosome biogenesis,translation,and the heat-shock response[J].Frontiers in Plant Science,2018,9:137.
[40] NAMBEESAN S,DATSENKA T,FERRUZZI M G,et al.Overexpression of yeast spermidine synthase impacts ripening,senescence and decay symptoms in tomato[J].The Plant Journal,2010,63(5):836-847.
[41] ZHANG Y,BUTELLI E,DE STEFANO R,et al.Anthocyanins double the shelf life of tomatoes by delaying overripening and reducing susceptibility to gray mold[J].Current Biology,2013,23(12):1 094-1 100.
[42] ZHANG Y,DE STEFANO R,ROBINE M,et al.Different reactive oxygen species scavenging properties of flavonoids determine their abilities to extend the shelf life of tomato[J].Plant Physiology,2015,169(3):1 568-1 583.
[43] 田世平.果实成熟和衰老的分子调控机制[J].植物学报,2013,48(5):481-488.
[44] QIN G,WANG Q,LIU J,et al.Proteomic analysis of changes in mitochondrial protein expression during fruit senescence[J].Proteomics,2009,9(17):4 241-4 253.
[45] JIANG G,YAN H,WU F,et al.Litchi fruit LcNAC1 is a target of LcMYC2 and regulator of fruit senescence through its interaction with LcWRKY1[J].Plant and Cell Physiology,2017,58(6):1 075-1 089.
[46] PEROTTI V E,MORENO A S,PODESTÁ F E.Physiological aspects of fruit ripening:the mitochondrial connection[J].Mitochondrion,2014,17:1-6.
[47] HUA D,WANG C,HE J,et al.A plasma membrane receptor kinase,GHR1,mediates abscisic acid-and hydrogen peroxide-regulated stomatal movement in Arabidopsis[J].Plant Cell,2012,24(6):2 546-2 561.
[48] WU F,CHI Y,JIANG Z,et al.Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis[J].Nature,2020,578(7796):577-581.
[49] SHADMANI N,AHMAD S H,SAARI N,et al.Chilling injury incidence and antioxidant enzyme activities of Carica papaya L.‘Frangi’ as influenced by postharvest hot water treatment and storage temperature[J].Postharvest Biology and Technology,2015,99:114-119.
[50] WANG Z,MA L,ZHANG X,et al.The effect of exogenous salicylic acid on antioxidant activity,bioactive compounds and antioxidant system in apricot fruit[J].Scientia Horticulturae,2015,181:113-120.
[1] 冯艳钰, 臧延青. 三种小麦麸皮总黄酮的体外抗氧化活性[J]. 食品与发酵工业, 2021, 47(9): 16-24.
[2] 师中迪, 宋雪婷, 余旭亚. 外源褪黑素对盐胁迫下单针藻Monoraphidium sp.QLY-1油脂合成的影响[J]. 食品与发酵工业, 2021, 47(9): 63-69.
[3] 丁文玉, 何聪芬, 刘蕾, 杨笑笑, 董坤. 草莓叶水提物对成纤维细胞合成Ⅰ型胶原及分泌骨形态发生蛋白-1的影响[J]. 食品与发酵工业, 2021, 47(9): 114-119.
[4] 江亿平, 卞贝, 张兆同, 潘磊庆, 汪小旵. 基于聚核模糊分类的多指标水蜜桃成熟度判别[J]. 食品与发酵工业, 2021, 47(9): 174-182.
[5] 占敏宣, 魏清江, 林雄, 李宏祥, 陈金印, 马巧利. PCA再分析采收成熟度对桃溪蜜柚贮藏品质变化模式的影响[J]. 食品与发酵工业, 2021, 47(9): 183-190.
[6] 杨玉宁, 陈松树, 高尔刚, 李园园, 潘秀珍, 刘红昌, 辛雪辉. 基于主成分分析的木通属植物果实品质评价[J]. 食品与发酵工业, 2021, 47(9): 191-200.
[7] 郭佳, 李云飞, 李诗佳, 关红霞, 陈晓光. 酸浆宿萼抗衰老作用及机理研究[J]. 食品与发酵工业, 2021, 47(8): 140-144.
[8] 黄展文, 王颖, 李明娟, 游向荣, 张雅媛, 周葵, 卫萍, 韦林艳. 采收成熟度对龙滩珍珠李果实品质的影响[J]. 食品与发酵工业, 2021, 47(7): 203-210.
[9] 樊田利, 刘若男, 王凤丽, 刘冬梅, 周鹏. 不同蒸制功率对西兰花营养品质的影响[J]. 食品与发酵工业, 2021, 47(19): 161-167.
[10] 刘云芬, 田天容, 殷菲胧, 廖玲燕, 普红梅, 康超, 帅良. 赤霉素对鲜切莴苣酶促褐变及活性氧代谢的影响[J]. 食品与发酵工业, 2021, 47(19): 215-220.
[11] 刘亚辉, 刘思彤, 王萱, 杨蕊, 金明. 金雀异黄酮对叔丁基过氧化氢诱导的衰老H9c2细胞的保护作用[J]. 食品与发酵工业, 2021, 47(18): 113-118.
[12] 吉正梅, 张晓春, 彭钰迪, 王树林, 布丽君, 解华东. 鸭胚源抗氧化肽TD12对HepG2细胞氧化应激损伤的保护作用[J]. 食品与发酵工业, 2021, 47(18): 141-148.
[13] 戚贺亭, 潘兆平, 李想, 刘倩, 王琛, 于洋, 廖艳芳, 付复华. 金盆柚不同成熟度对湘柑茶品质的影响[J]. 食品与发酵工业, 2021, 47(16): 103-116.
[14] 李辉, 王廉馨, 韩昀稣, 林丹妮, 曲丽娜. 南极磷虾油对衰老模型小鼠抗氧化作用的研究[J]. 食品与发酵工业, 2021, 47(16): 123-127.
[15] 李泽, 黄和, 钟赛意, 陈小丽, 陈建平, 任鹏康, 刘海. 减压处理对荔枝果实膜脂代谢和能量代谢的影响[J]. 食品与发酵工业, 2021, 47(16): 159-165.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn