Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (16): 276-282    DOI: 10.13995/j.cnki.11-1802/ts.023939
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
微生物来源淀粉分支酶异源高效表达策略的研究进展
管媛媛, 杨婷, 葛雨嘉, 黄静*
华东师范大学 生命科学学院,上海,200241
Recent advances in high-efficiency heterologous expression strategies of microbial-derived starch branching enzyme
GUAN Yuanyuan, YANG Ting, GE Yujia, HUANG Jing*
School of Life Sciences,East China Normal University,Shanghai 200241,China
下载:  HTML   PDF (1034KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 淀粉分支酶(starch-branching enzyme, SBE,EC 2.4.1.18)是一种参与淀粉生物合成的糖基转移酶,能切断淀粉分子中的α-1,4-糖苷键,由此形成的非还原性低聚糖通过α-1,6-糖苷键连接至受体链上,形成α-1,6分支位点,经过“切割-转移-连接”多次反应获得一种新型生物改性淀粉——高支化淀粉。微生物来源的SBE具有产量高、稳定性好、易于异源表达等优势,是生产大量SBE的研究热点。在众多酶表达宿主中,大肠杆菌和枯草芽孢杆菌是SBE异源表达的最常见宿主菌。该文着重阐述了近年来有关实现微生物来源的SBE在以上2种宿主内异源高效表达策略的研究进展,为深入探究SBE作用机理及改性淀粉的工业化应用提供了重要参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
管媛媛
杨婷
葛雨嘉
黄静
关键词:  淀粉分支酶  异源表达  改性淀粉  大肠杆菌  枯草芽孢杆菌    
Abstract: Starch-branching enzyme (SBE, EC 2.4.1.18) is a glycosyltransferase involved in starch biosynthesis. It can cut the α-1,4-glycosidic bond in starch molecules and form non-reducing oligosaccharide connecting to the receptor chain through α-1,6-glycosidic bond to form α-1,6 branching sites. Through these “cutting-transfer-linking” processes, a new type of biologically modified starch named highly branched starch can be obtained. Microbial-derived starch branching enzymes have the advantages of high yield and better stability as well. It can be easily expressed in heterologous hosts. As a consequence, mass production of SBE has become a research hotspot in recent years. Among many hosts for enzyme expression, Escherichia coli and Bacillus subtilis are the most common host strains for heterologous expression of SBE. This paper focused on recent advances in strategies for high-efficiency heterologous expression of microbial-derived SBEs in these two hosts, providing important references for further investigation of the mechanism of SBE function and the industrialized application of modified starch.
Key words:  starch branching enzyme    heterologous expression    modified starch    Escherichia coli    Bacillus subtilis
收稿日期:  2020-03-12      修回日期:  2020-04-14           出版日期:  2020-08-25      发布日期:  2020-09-17      期的出版日期:  2020-08-25
基金资助: 大学生创新创业训练计划项目(2019PY-367)
作者简介:  本科生(黄静教授为通讯作者,E-mail:jhuang@bio.ecnu.edu.cn)
引用本文:    
管媛媛,杨婷,葛雨嘉,等. 微生物来源淀粉分支酶异源高效表达策略的研究进展[J]. 食品与发酵工业, 2020, 46(16): 276-282.
GUAN Yuanyuan,YANG Ting,GE Yujia,et al. Recent advances in high-efficiency heterologous expression strategies of microbial-derived starch branching enzyme[J]. Food and Fermentation Industries, 2020, 46(16): 276-282.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.023939  或          http://sf1970.cnif.cn/CN/Y2020/V46/I16/276
[1] COPELAND L, BLAZEK J, SALMAN H, et al. Form and functionality of starch[J]. Food Hydrocolloids, 2009, 23(6): 1 527-1 534.
[2] SALERMÓN J, MANSON J E, STAMPFER M J, et al. Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women[J]. The Journal of the American Medical Association, 1997, 277(6): 472-477.
[3] ZHANG G, HAMAKER B R. Slowly digestible starch: Concept, mechanism, and proposed extended glycemic index[J]. Critical Reviews in Food Science and Nutrition, 2009, 49(10): 852-867.
[4] GO R M, MARK A E, MALDE A K, et al. Binding of starch fragments to the starch branching enzyme: Implications for developing slower-digesting starch[J]. Biomacromolecules, 2015, 16(8):2 475-2 481.
[5] TETLOW I J, EMES M J. A review of starch-branching enzymes and their role in amylopectin biosynthesis[J]. International Union of Biochemistry and Molecular Biology Life, 2014, 66(8): 546-558.
[6] ABAD M C, BINDERUP K, RIOS-STEINER J, et al. The X-ray crystallographic structure of Escherichia coli branching enzyme[J]. Journal of Biological Chemistry, 2002, 277(44):42 164-42 170.
[7] DIJKHUIZEN L, KRALJ S, VAN DER MAAREL M J E C, et al. The unique branching patterns of deinococcus glycogen branching enzymes are determined by their N-terminal domains[J]. Applied and Environmental Microbiology, 2009, 75(5): 1 355-1 362.
[8] PALOMO M, PIJNING T, BOOIMAN T, et al. Thermus thermophilus glycoside hydrolase family 57 branching enzyme: Crystal structure, mechanism of action and products formed[J]. Journal of Biological Chemistry, 2011, 286(5): 3 520-3 530.
[9] 李才明, 李阳, 顾正彪, 等. 麦芽糊精的支化修饰及其特性研究进展[J]. 中国食品学报, 2018, 18(10): 1-8.
[10] TAKATA H,OHDAN K,TAKAHA T,et al. Properties of branching enzyme from hyperthermophilic bacterium, Aquifex aeolicus, and its potential for production of highly-branched cyclic dextrin[J]. Journal of Applied Glycoscience, 2003, 50(1): 15-20.
[11] CHOI S S, DANIELEWSKA NIKIEL B, KOJIMA I, et al. Safety evaluation of 1,4-α-glucan branching enzymes from Bacillus stearothermophilus and Aquifex aeolicus expressed in Bacillus subtilis[J]. Food Chem Toxicol, 2009, 47(8): 2 044-2 051.
[12] FAN Qin,XIE Zhengjun,ZHAN Jinling, et al. A glycogen branching enzyme from Thermomonospora curvata: Characterization and its action on Maize starch[J]. Starch - Stārke, 2016, 68(3-4): 355-364.
[13] JOBLING S. Improving starch for food and industrial applications[J]. Current Opinion in Plant Biology, 2003, 7(2):210-218.
[14] 马尔克·乔斯·埃利塞·科尔内利斯·凡德马雷拉, 多伊德·哈科博·宾纳玛, 辛迪·塞梅因, 等. 新型可缓慢消化的贮存碳水化合物: 荷兰, CN101631474[P]. 2010-01-20.
[15] PARIZA M W, JOHNSON E A. Evaluating the safety of microbial enzyme preparations used in food processing: Update for a new century[J]. Regulatory Toxicology & Pharmacology, 2001, 33(2): 173-186.
[16] RYOYAMA K, KIDACHI Y, YAMAGUCHI H, et al. Anti-tumor activity of an enzymatically synthesized α-1,6 branched α-1,4-glucan, glycogen[J]. Journal of the Agricultural Chemical Society of Japan, 2004, 68(11): 2 332-2 340.
[17] BAN Xiaofeng, LI Caiming, GU Zhengbiao, et al. Expression and biochemical characterization of a thermostable branching enzyme from Geobacillus thermoglucosidans[J]. Journal of Molecular Microbiology and Biotechnology, 2016,26(5): 303-311.
[18] MOHTAR N S, RAHMAN M B A, RAHMAN R N Z R A, et al. Expression and characterization of thermostable glycogen branching enzyme from Geobacillus mahadia Geo-05[J].Peerj,2016, 4(12): e2 714.
[19] KAUR J, KUMAR A, KAUR J. Strategies for optimization of heterologous protein expression in E. coli : Roadblocks and reinforcements[J]. International Journal of Biological Macromolecules, 2018, 106: 803-822.
[20] 鲍春辉, 顾正彪, 李才明, 等. 重组大肠杆菌产淀粉分支酶的发酵条件探索[J]. 食品工业科技, 2014, 35(15): 155-158,162.
[21] 范琴, 谢正军, 金征宇, 等. Thermomonospora curvata淀粉分支酶的过量表达及其催化反应机理研究[J]. 现代食品科技, 2016, 32(6): 70-76.
[22] LI Lingling, SU Lingqia, HU Fan, et al. Recombinant expression and characterization of the glycogen branching enzyme from Vibrio vulnificus and its application in starch modification[J]. International Journal of Biological Macromolecules, 2019,155: 987-994.
[23] VICTOR M P, ACHARYA D, BEGUM T, et al. The optimization of mRNA expression level by its intrinsic properties—Insights from codon usage pattern and structural stability of mRNA[J]. Genomics, 2019, 111(6),1 292-1 297.
[24] LIU Hua, LI Jianghua, DU Guocheng, et al. Enhanced production of α-cyclodextrin glycosyltransferase in Escherichia coli by systematic codon usage optimization[J]. Journal of Industrial Microbiology & Biotechnology, 2012, 39(12):1 841-1 849.
[25] 张晓元, 郝荣华, 刘飞, 等. 密码子优化提高海藻糖合成酶基因在大肠杆菌中的表达水平[J]. 食品与药品, 2019, 21(1): 1-6.
[26] TOLIA N H, JOSHUA TOR L. Strategies for protein coexpression in Escherichia coli[J]. Nature Methods, 2006, 3(1): 55-64.
[27] 刘艺婷.淀粉分支酶在大肠杆菌中的分泌表达及其分子改造研究[D].无锡:江南大学, 2017.
[28] KO Y T, CHUNG P S, SHIH Y C, et al. Cloning, characterization, and expression of mungbean (Vigna radiata L.) starch branching enzyme Ⅱ cDNA in Escherichia coli[J]. Journal of Agricultural & Food Chemistry, 2009, 57(3): 871-879.
[29] DER MAAREL M J, VOS A, SANDERS P, et al. Properties of the glucan branching enzyme of the hyperthermophilic bacterium Aquifex aeolicus[J]. Biocatalysis and Biotransformation, 2010, 21(4-5):199-207.
[30] 李阳, 李兆丰, 任俊彦, 等. 一种提高淀粉分支酶在大肠杆菌中胞外分泌表达的方法:中国,CN107119026A[P]. 2017-09-01.
[31] 成成, 李兆丰, 李彬, 等. 利用重组大肠杆菌生产α-环糊精葡萄糖基转移酶[J]. 生物加工过程, 2009, 7(3): 56-63.
[32] 邹纯.重组Bacillus deramificans普鲁兰酶的高效胞外表达及其应用[D].无锡:江南大学, 2016.
[33] 余小霞, 田健, 刘晓青, 等. 枯草芽孢杆菌表达系统及其启动子研究进展[J]. 生物技术通报, 2015, 31(2): 35-44.
[34] 吴志伟, 徐立新, 佟金, 等. 多拷贝策略在增强目的基因表达中的应用[J]. 生命科学研究, 2016, 20(2): 166-170.
[35] öZTÜRK S, ERGÜN B G, ÇALıK P. Double promoter expression systems for recombinant protein production by industrial microorganisms[J]. Applied Microbiology and Biotechnology, 2017, 101(20): 7 459-7 475.
[36] ZHANG Kang, SU Lingqia, DUAN Xuguo, et al. High-level extracellular protein production in Bacillus subtilis using an optimized dual-promoter expression system[J]. Microbial Cell Factories, 2017, 16(1): 32.
[37] KANG H K, JANG J H, SHIM J H, et al. Efficient constitutive expression of thermostable 4-α-glucanotransferase in Bacillus subtilis using dual promoters[J]. World Journal of Microbiology and Biotechnology, 2010, 26(10):1 915-1 918.
[38] SONG Wan, NIE Yao, MU Xiaoqing, et al. Enhancement of extracellular expression of Bacillus naganoensis pullulanase from recombinant Bacillus subtilis : Effects of promoter and host[J]. Protein Expression and Purification, 2016, 124: 23-31.
[39] 李兆丰, 顾正彪, 刘艺婷, 等. 一种提高淀粉分支酶活力的方法:中国, CN106190998A[P]. 2016-08-25.
[40] LIU Yiting, LI Caiming, GU Zhengbiao, et al. Alanine 310 is important for the activity of 1,4-α-glucan branching enzyme from Geobacillus thermoglucosidans STB02[J]. International Journal of Biological Macromolecules, 2017, 97: 156-163.
[41] 袁林, 曾静, 郭建军, 等. 极端嗜热酸性α-淀粉酶PFA在枯草芽孢杆菌中的高效分泌表达[J]. 食品科学, 2018, 39(18): 100-108.
[42] SONG Y F, NIKOLOFF J M, ZHANG D W. Improving protein production on the level of regulation of both expression and secretion pathways in Bacillus subtilis[J]. Journal of Microbiology & Biotechnology, 2015, 25(7): 963-977.
[43] TSIRIGOTAKI A, DE GEYTER J, SOSTARIC N, et al. Protein export through the bacterial Sec pathway[J]. Nature Reviews Microbiology, 2017, 15(1): 21-36.
[44] PALMER T, BERKS B C. The twin-arginine translocation (Tat) protein export pathway[J]. Nature Reviews Microbiology,2012, 10(7): 483-496.
[45] FREUDL R. Signal peptides for recombinant protein secretion in bacterial expression systems[J]. Microbial Cell Factories, 2018, 17(1): 52.
[46] YAO Dongbang, SU Lingqia, LI Na, et al. Enhanced extracellular expression of Bacillus stearothermophilus α-amylase in Bacillus subtilis through signal peptide optimization, chaperone overexpression and α-amylase mutant selection[J]. Microbial Cell Factories, 2019, 18(1): 69.
[47] WATANABE K, TSUCHIDA Y, OKIBE N, et al. Scanning the Corynebacterium glutamicum R genome for high-efficiency secretion signal sequences[J]. Microbiology, 2009, 155(3): 741-750.
[48] 杨韵霏, 李由然, 张梁, 等. 细菌麦芽糖淀粉酶在枯草芽孢杆菌中的诱导型异源表达[J]. 微生物学通报, 2017, 44(2): 263-273.
[49] 王驰, 李柱, 李才明, 等. 两阶段温度控制策略以及助剂促进淀粉分支酶的胞外表达[J]. 食品与发酵工业, 2016, 42(8): 19-24.
[50] ZHANG Yu, NIE Yao, ZHOU Xia, et al. Enhancement of pullulanase production from recombinant Bacillus subtilis by optimization of feeding strategy and fermentation conditions[J]. AMB Express, 2020, 10(1):11.
[1] 解天慧, 石慧. 大肠杆菌O157∶H7噬菌体EC-p9的内溶酶和穿孔素的特性预测及克隆表达[J]. 食品与发酵工业, 2021, 47(9): 107-113.
[2] 高宇豪, 吴勇杰, 朱亚鑫, 付静, 徐建国, 王松涛, 徐国强, 张晓梅, 史劲松, 许正宏. 产谷胱甘肽毕赤酵母工程菌的构建及能量调控[J]. 食品与发酵工业, 2021, 47(7): 21-26.
[3] 唐璎, 邓展瑞, 黄佳, 杨晓楠. 黄曲霉毒素B1降解菌株的鉴定及降解产物研究[J]. 食品与发酵工业, 2021, 47(7): 64-70.
[4] 彭燕鸿, 苏爱秋, 黄伟文, 蓝素桂, 杨天云, 谭强. 微生物嗜热脂肪酶研究进展[J]. 食品与发酵工业, 2021, 47(6): 289-294.
[5] 钱蕾, 刘延峰, 李江华, 刘龙, 堵国成. 适应性进化和改造质粒稳定性促进枯草芽孢杆菌合成N-乙酰神经氨酸[J]. 食品与发酵工业, 2021, 47(5): 1-6.
[6] 李晨晨, 李梦丽, 江波, 张涛. 2'-岩藻糖基乳糖的生物合成菌株构建及发酵条件研究[J]. 食品与发酵工业, 2021, 47(3): 10-17.
[7] 叶德晓, 黄佳俊, 卢宇靖, 林育成, 李慧灵, 谭景航, 周金林. α-L-鼠李糖苷酶AnRhaE在毕赤酵母中的表达及应用[J]. 食品与发酵工业, 2021, 47(3): 25-30.
[8] 郭峰, 董明辉, 高梦园, 舒方, 孙冬冬, 汪维云. 柠檬香蜂草精油的气相色谱-质谱联用分析及抑菌活性研究[J]. 食品与发酵工业, 2021, 47(2): 109-113.
[9] 曾伟主, 单小玉, 房峻, 周景文. 微液滴适应性进化强化大肠杆菌耐受高浓度L-山梨糖[J]. 食品与发酵工业, 2021, 47(1): 1-7.
[10] 楼志华, 刘翔, 张劲楠. 嗜糖假单胞菌麦芽四糖酶基因在地衣芽孢杆菌中的异源表达[J]. 食品与发酵工业, 2021, 47(1): 50-54.
[11] 杨心萍, 宋词, 张伟豪, 刘艳, 王洲, 薛正莲. 常压室温等离子体与5-溴尿嘧啶复合诱变及快速选育腺苷高产菌株[J]. 食品与发酵工业, 2020, 46(9): 73-77.
[12] 张大伟, 刘德华, 黄钦钦, 田亚平. 食品级高产亮氨酸氨肽酶重组Bacillus subtilis的构建和发酵优化[J]. 食品与发酵工业, 2020, 46(8): 1-6.
[13] 郭宵, 安亚静, 柴成程, 路福平, 刘夫锋. 大肠杆菌分泌表达裂解性多糖单加氧酶发酵条件的优化[J]. 食品与发酵工业, 2020, 46(5): 31-37.
[14] 胡凡, 宿玲恰, 吴敬. Thermobifida fusca麦芽三糖淀粉酶的重组表达及其在麦芽三糖制备中的应用[J]. 食品与发酵工业, 2020, 46(5): 23-30.
[15] 郭佳欣, 张培基, 刘丁玉, 洪坤强, 陈涛, 王智文. 常压室温等离子体诱变选育高产核黄素枯草芽孢杆菌[J]. 食品与发酵工业, 2020, 46(4): 28-33.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn