Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (16): 17-23    DOI: 10.13995/j.cnki.11-1802/ts.023972
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
乳酸菌缓解全氟辛烷磺酸暴露导致的肝脏和肠道损伤
孙姗姗, 乌翛冰, 杨树荣, 焦婷, 司倩, 王刚*, 赵建新, 张灏, 陈卫
江南大学 食品学院,江苏 无锡,214122
Lactic acid bacteria relieve liver and intestinal damage caused by perfluorooctane sulfonate exposure
SUN Shanshan, WU Xiaobing, YANG Shurong, JIAO Ting, SI Qian, WANG Gang*, ZHAO Jianxin, ZHANG Hao, CHEN Wei
School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
下载:  HTML   PDF (7761KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究乳酸菌对全氟辛烷磺酸(perfluorooctane sulfonate,PFOS)毒害的调控效果及可能机制,将C57BL/6J雄性小鼠随机分成6组,空白对照组、PFOS模型组灌胃质量浓度为30 g/L的蔗糖溶液,4株乳酸菌(Lactobacillus bulgaricus D2A49、Lactobacillus bulgaricus DQHXNS3L9、 Pediococcus pentosaceus FFSCDJY63L2和Pediococcus pentosaceus JSNJPK1-1)干预组灌胃乳酸菌30 d(109 CFU/mL);16~30 d, PFOS模型组和菌株干预组根据小鼠体重灌胃3 μg/(g BW·d)的PFOS。测定小鼠肝脏指数,肝脏及结肠病理,炎症水平,血清肝酶水平,结肠紧密连接蛋白含量,粪便中短链脂肪酸含量。结果表明,4株乳酸菌均可缓解PFOS暴露后的肝脏和肠道损伤,L. bulgricus DQHXNS3L9和L. bulgricus D2A49可降低肝脏指数、血清中肝酶含量、肠道炎症,提高短链脂肪酸及紧密连接蛋白含量缓解PFOS毒害。乳酸菌可通过调节短链脂肪酸含量缓解PFOS暴露导致的肝脏和肠道损伤,但缓解效果存在菌株差异。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙姗姗
乌翛冰
杨树荣
焦婷
司倩
王刚
赵建新
张灏
陈卫
关键词:  乳酸菌  全氟辛烷磺酸  毒性损伤  紧密连接蛋白  短链脂肪酸    
Abstract: To investigate the regulatory effect of lactic acid bacteria on the toxicity by perfluorooctane sulfonate (PFOS) in mice and its possible mechanism, 36 male C57BL/6J mice were randomized into six groups. The control group and the PFOS model group were treated with 30 g/L (sucrose) solution, while the four strain intervention groups (Lactobacillus bulgaricus D2A49, Lactobacillus bulgaricus DQHXNS3L9, Pediococcus pentosaceus FFSCDJY63L2 and Pediococcus pentosaceus JSNJPK1-1) were treated with lactic acid bacteria resuspended in 30 g/L(sucrose) solution for 30 days (109 CFU/mL). From day 16 to 30, the PFOS model group and the strain intervention groups were exposed with 3 μg/(g BW·d) PFOS. Liver parameters such as liver index, IL-1β, TNF-α and serum liver enzymes levels were determined; histopathological analysis was performed for liver and colon; the levels of IL-10, TNF-α and the tight junction protein in colon and short-chain fatty acids in faces were also examined. The results indicated that PFOS exposed mice developed hallmark features of liver and intestinal damage, and lactic acid bacteria attenuated the development of the damage. Further analysis demonstrated that supplementation with L. bulgricus DQHXNS3L9 and L. bulgricus D2A49 significantly decreased the liver index, serum liver enzyme content and intestine inflammation, attenuated the pathological changes in liver and colon tissues, and elevated the level of the tight junction protein in colon and short-chain fatty acids in stool. Therefore, lactic acid bacteria showed the capabilities in preventing and alleviating liver and intestinal damage caused by PFOS exposure through short-chain fatty acids regulation with individual differences.
Key words:  lactic acid bacteria    perfluorooctane sulfonate    toxic damage    tight junction protein    short-chain fatty acids
收稿日期:  2020-03-16      修回日期:  2020-04-14           出版日期:  2020-08-25      发布日期:  2020-09-17      期的出版日期:  2020-08-25
基金资助: 国家自然基金项目(31671839)
作者简介:  硕士研究生(王刚副教授为通讯作者,E-mail: wanggang@jiangnan.edu.cn)
引用本文:    
孙姗姗,乌翛冰,杨树荣,等. 乳酸菌缓解全氟辛烷磺酸暴露导致的肝脏和肠道损伤[J]. 食品与发酵工业, 2020, 46(16): 17-23.
SUN Shanshan,WU Xiaobing,YANG Shurong,et al. Lactic acid bacteria relieve liver and intestinal damage caused by perfluorooctane sulfonate exposure[J]. Food and Fermentation Industries, 2020, 46(16): 17-23.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.023972  或          http://sf1970.cnif.cn/CN/Y2020/V46/I16/17
[1] 宋彦敏,周连宁,郝文龙,等.全氟化合物的污染现状及国内外研究进展[J]. 环境工程,2017,35(10):82-86.
[2] TOMY G T, BUDAKOWSKI W, HALLDORSON T, et al. Fluorinated organic compounds in an eastern Arctic marine food web[J]. Environmental science & technology, 2004, 38(24):6 475-6 481.
[3] XU C, JIANG Z Y, LIU Q, et al. Estrogen receptor beta mediates hepatotoxicity induced by perfluorooctane sulfonate in mouse[J]. Environmental Science and Pollution Research, 2017, 24(15): 13 414-13 423.
[4] MARTIN M T, BRENNAN R J, HU W Y, et al. Toxicogenomic study of triazole fungicides and perfluoroalkyl acids in rat livers predicts toxicity and categorizes chemicals based on mechanisms of toxicity[J]. Toxicological Sciences, 2007, 97(2):595-613.
[5] CHEN X, NIE X, MAO J, et al. Perfluorooctanesulfonate induces neuroinflammation through the secretion of TNF-α mediated by the JAK2/STAT3 pathway[J]. NeuroToxicology, 2018, 66(3): 32-42.
[6] LONG M,KJELDSEN L,GHISARI M,et al. Endocrine disrupting compounds and heavy metals in the amniotic fluid and neurodevelopment disorders: A case-control study[J]. Toxicology Letters, 2014, 229(S1): 121.
[7] WANG H X,DU H Y,YANG J Q,et al. PFOS, PFOA, estrogen homeostasis, and birth size in Chinese infants[J]. Chemosphere, 2019, 221(4): 349-355.
[8] HAUGHOM B, ØYSTEIN S.The mechanism underlying the hypolipemic effect of perfluorooctanoic acid (PFOA), perfluorooctane sulphonic acid (PFOSA) and clofibric acid[J]. Biochimica et Biophysica Acta(BBA)-Lipids and Lipid Metabolism, 1992, 1 128(1):65-72.
[9] CHRISTENSEN K Y, RAYMOND M, MEIMAN J. Perfluoroalkyl substances and metabolic syndrome[J]. International Journal of Hygiene and Environmental Health, 2019, 222(1):147-153.
[10] DEE G S,JIE X,ANOO P S. Positive association between perfluoroalkyl chemicals and hyperuricemia in children[J]. Am J Epidemiol, 2013, 177(11): 1 255-1 262.
[11] JOHNSON J D, GIBSON S J, OBER R E. Cholestyramine-enhanced fecal elimination of carbon-14 in rats after administration of ammonium[14C]Perfluorooctanoate or Potassium [14C]Perfluorooctanesulfonate [J]. Toxicological Sciences, 1984, 4(6): 972-976.
[12] ZOU W, LIU W, YANG B, et al. Quercetin protects against perfluorooctanoic acid-induced liver injury by attenuating oxidative stress and inflammatory response in mice [J]. International Immunopharmacology, 2015, 28(1): 129-135.
[13] LIU W, XU C, SUN X, et al. Grape seed proanthocyanidin extract protects against perfluorooctanoic acid-induced hepatotoxicity by attenuating inflammatory response, oxidative stress and apoptosis in mice [J]. Toxicology Research, 2016, 5(1): 224-234.
[14] 翟齐啸. 乳酸菌减除镉危害的作用及机制研究[D].无锡:江南大学,2015.
[15] 刘云才,张娟,焦聪聪,等. 乳酸菌对铜暴露大鼠肝功能及氧化应激的影响[J].青岛大学医学院学报, 2017, 53(2):198-202.
[16] 韩佳萦,苏伊玲,熊丽,等. 塑化剂DEHP暴露对小鼠巨噬细胞的免疫毒性作用[J].农业环境科学学报, 2018, 37(4):673-679.
[17] 李秋月,许海玉,杨洪军.促炎因TNF-α,IL-1β,IL-6在神经病理性疼痛中的研究进展[J].中国中药杂志, 2017,42(19):3 709-3 712.
[18] 邢家溧.植物乳杆菌缓解典型全氟及多氟烷基化合物毒性及机制研究[D]. 无锡:江南大学,2017.
[19] MOLLENHAUER M A M, BRADSHAW S G, FAIR P A, et al. Effects of perfluorooctane sulfonate (PFOS) exposure on markers of inflammation in female B6C3F1 mice[J]. Journal of environmental science and health. Part A, 2011, 46(2): 97-108.
[20] 郑丽,董光辉,潘艳艳,等.全氟辛烷磺酸对雄性小鼠免疫状态的影响[J]. 环境与健康杂志, 2011,28(3):189-191.
[21] MIR H, MEENA A S, CHAUDHRY K K, et al. Occludin deficiency promotes ethanol-induced disruption of colonic epithelial junctions, gut barrier dysfunction and liver damage in mice[J]. BBA - General Subjects, 2016, 1 860(4): 765-774.
[22] 马姝丽,李小芹,王菊平.酪酸梭菌对胆汁淤积大鼠的肠黏膜通透性和紧密连接蛋白的影响[J]. 实用医学杂志, 2018, 34(6):69-72.
[23] 徐万里,陆高,梁世杰,等.短链脂肪酸介导的菌群-宿主互动与肠易激综合征的研究进展[J]. 世界华人消化杂志,2015,23(36):5 815-5 822.
[24] REILLY R J, ROMBEAU J L. Metabolism and potential clinical application of short chain fatty acid[J]. Clinical Nutrition, 1993, 12(Suppl 1):97-105.
[25] BULTMAN S J. Molecular pathways: Gene-environment interactions regulating dietary fiber induction of proliferation and apoptosis via butyrate for cancer prevention[J]. Clinical Cancer Research, 2014, 20 (4):799-803.
[26] FUKUDA S, TOH H, HASE K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate[J]. Nature, 2012, 469 (7 331):543-547.
[1] 张波, 谢广发, 李国龙, 孙国昌, 金建明, 朱炜俊, 刘菊. 黄酒生物酸化浸米与浸米浆水的利用[J]. 食品与发酵工业, 2021, 47(7): 168-174.
[2] 梁鑫, 陈思雨, 赵育, 雷钰, 孔倩倩, 万欣, 张宝善. 乳酸菌和酵母菌发酵红枣汁工艺优化及成分分析[J]. 食品与发酵工业, 2021, 47(7): 175-182.
[3] 吴小艳, 刘文星, 刘忠义, 李希宇, 付满, 李汀. 芒果酸奶发酵及后熟过程中乳酸菌素的产生及其抑菌作用[J]. 食品与发酵工业, 2021, 47(7): 183-188.
[4] 朱慧越, 邹仁英, 许梦舒, 王琳琳, 田培郡, 陈卫, 王刚. 短链脂肪酸-酰化淀粉对小鼠抑郁样行为的缓解及机制[J]. 食品与发酵工业, 2021, 47(6): 26-33.
[5] 熊蝶, 袁岚玉, 李媛媛, 范鹏飞, 冯武. 陕西泡菜中降解亚硝酸盐乳酸菌的筛选及其发酵特性与耐受性研究[J]. 食品与发酵工业, 2021, 47(6): 139-144.
[6] 邢晓莹, 刘毅, 张怀敏, 李江涌, 王如福. 山西老陈醋醋酸发酵过程中优良产酸菌株的筛选及鉴定[J]. 食品与发酵工业, 2021, 47(6): 201-207.
[7] 王曼, 杨琛, 覃晓玉, 康孟杰, 郝桂芳, 王承明. 鲊肉粉中乳酸菌和葡萄球菌的筛选及鉴定[J]. 食品与发酵工业, 2021, 47(5): 22-27.
[8] 宁亚维, 侯琳琳, 于同月, 刘茁, 杨正, 王志新, 贾英民. UPLC-MS/MS法快速测定乳酸菌发酵食品中的苯乳酸[J]. 食品与发酵工业, 2021, 47(5): 174-179.
[9] 史巧, 刘毕琴, 汤回花, 王馨蕊, 朱力舟, 赵楠, 李宏. 发酵蔬菜菌种应用及菌群调控研究进展[J]. 食品与发酵工业, 2021, 47(5): 273-281.
[10] 李娜, 崔梦君, 马佳佳, 雷炎, 郭壮, 张振东. 基于Illumina MiSeq测序和传统可培养方法的洪湖鲊广椒乳酸菌多样性研究[J]. 食品与发酵工业, 2021, 47(4): 110-115.
[11] 邹仁英, 朱慧越, 许梦舒, 田培郡, 张灏, 赵建新, 陈卫, 王刚. “精神益生菌”对慢性应激诱导的抑郁和便秘症状的缓解及机制研究[J]. 食品与发酵工业, 2021, 47(3): 1-9.
[12] 盖昱梓, 孙静娴, 黄刚, 金刚. 苹果酸-乳酸发酵细菌乙醇胁迫应答机制研究进展[J]. 食品与发酵工业, 2021, 47(3): 288-293.
[13] 石佳佳, 齐天翊, 张萌, 陈淋霞, 张笛, 包智华. 自制酵素中乳酸菌群动态分析及对重金属的吸附积累特性[J]. 食品与发酵工业, 2021, 47(1): 14-20.
[14] 李丹阳, 李宇辉, 高云云, 闫艺, 王俊钢, 卢士玲. 新疆哈萨克族风干肉中产蛋白酶乳酸菌的筛选及酶学特性研究[J]. 食品与发酵工业, 2020, 46(9): 57-63.
[15] 胡锦鹏, 吴曼铃, 时瑞, 陈丽娇, 梁鹏, 程文健. 乳酸菌在发酵鱼制品加工中的应用研究概述[J]. 食品与发酵工业, 2020, 46(9): 285-289.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn