Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (17): 15-21    DOI: 10.13995/j.cnki.11-1802/ts.024015
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
Nanog蛋白在大肠杆菌中的可溶性表达及发酵优化
李正杰1, 顾正华1, 石贵阳1, 李由然1, 辛瑜1,2, 张梁1*
1(粮食发酵工艺与技术国家工程实验室(江南大学),江苏 无锡,214000)
2(工业生物技术教育部重点实验室(江南大学),江苏 无锡,214000)
Soluble expression of human Nanog protein in Escherichia coli and its fermentation optimization
LI Zhengjie1, GU Zhenghua1, SHI Guiyang1, LI Youran1, XIN Yu1,2, ZHANG Liang1*
1(National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214000, China)
2(Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214000, China)
下载:  HTML   PDF (2121KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为高效制备可溶性人源Nanog蛋白,降低Nanog蛋白的使用成本。该研究通过分子克隆技术构建重组大肠杆菌(pET32a-Nanog),利用IPTG诱导进行可溶性融合表达。采用镍离子柱亲和层析法纯化产物并将纯化后产物进行肠激酶酶切后得到目的蛋白,Western blot鉴定该蛋白抗体结合的特异性并进一步优化发酵条件。结果表明,原核表达载体pET32a-Nanog构建成功,可在大肠杆菌中与硫氧还蛋白融合表达,融合蛋白经肠激酶酶切后得到相对分子质量约为38 kDa的蛋白,Western blot鉴定该蛋白可与Nanog抗体特异性结合。在摇瓶培养条件下,得到最优发酵条件是诱导温度37 ℃、IPTG浓度0.2 mmol/L、甘油为补料碳源;15 L发酵罐上进一步优化溶氧条件及温度控制方式,最终在溶氧设置在30%条件下,37 ℃(诱导期间30 ℃维持30 min)发酵12 h后得到最高Nanog产量1 386.4 mg/L,经蛋白纯化后纯度达到90%,为后续Nanog多克隆抗体的制备和基础医学实验研究奠定了基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李正杰
顾正华
石贵阳
李由然
辛瑜
张梁
关键词:  Nanog  原核表达  蛋白质纯化  发酵优化    
Abstract: To efficiently prepare soluble human-derived Nanog protein and reduce the cost, recombinant expression Escherichia coli(pET32a-Nanog) was constructed by molecular cloning technology and soluble fusion expression was induced by isopropyl-β-D-thiogalactopyranoside(IPTG). The product was purified by Ni-NTA affinity chromatography and was digested by enterokinase to obtain the target protein. Western blot was used to identify the specificity of antibody binding to the protein and the fermentation conditions were further optimized. The results showed that the prokaryotic expression vector pET32a-Nanog was successfully constructed and could be fused expression with the thioredoxin in E.coli. The fusion protein was digested by enterokinase to obtain a protein with a relative molecular mass of about 38 kDa. The protein could bind to Nanog antibodies specifically by Western blot. The optimal fermentation results under shake culture conditions contained induction temperature of 37 ℃, IPTG concentration 0.2 mmol/L, glycerin as the feed carbon source. The dissolved oxygen and temperature control methods were further optimized in a 15 L fermenter. The highest Nanog yield was up to 1 386.4 mg/L after 12 hours with the dissolved oxygen set at 30%, 37 ℃(30 ℃ for 30 min during the induction period), and reached 90% purity after protein purification. This study provided the base for the subsequent preparation of Nanog polyclonal antibodies and Nanog basic medical experimental research.
Key words:  Nanog    prokaryotic expression    protein purification    fermentation optimization
收稿日期:  2020-03-20      修回日期:  2020-04-21           出版日期:  2020-09-15      发布日期:  2020-10-14      期的出版日期:  2020-09-15
基金资助: 国家重点研发计划项目高版本模式微生物底盘细胞(2018YFA0900300)
作者简介:  硕士研究生(张梁教授为通讯作者,E-mail:zhangl@jiangnan.edu.cn)
引用本文:    
李正杰,顾正华,石贵阳,等. Nanog蛋白在大肠杆菌中的可溶性表达及发酵优化[J]. 食品与发酵工业, 2020, 46(17): 15-21.
LI Zhengjie,GU Zhenghua,SHI Guiyang,et al. Soluble expression of human Nanog protein in Escherichia coli and its fermentation optimization[J]. Food and Fermentation Industries, 2020, 46(17): 15-21.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.024015  或          http://sf1970.cnif.cn/CN/Y2020/V46/I17/15
[1] BOOTH H A,HOLLAND P W.Eleven daughters of Nanog[J].Genomics,2004,84(2):229-238.
[2] EZEH U I,TUREK P J,REIJO R A,et al.Human embryonic stem cell genes Oct4,Nanog, Stellar, and GDF3 are expressed in both seminoma and breast carcinoma[J].Cancer,2005,104(10):2 255-2 265.
[3] HYSLOP L,STOJKOVIC M,ARMSTRONG L,et al.Downregulation of Nanog induces differentiation of human embryonic stem cells to extraembryonic lineages[J].Stem Cells (Miamisburg),2005,23(8):1 035-1 043.
[4] LIU Na,LU Min.The signal transduction pathways and molecules for ES cells self-renewal[J].科学通报(英文版),2005,50(8):721-726.
[5] SILVA J,NICHOLS J,THEUNISSEN T W,et al.Nanog is the gateway to the pluripotent ground state[J].Cell,2009,138(4):722-737.
[6] PRADO M M,FRAMPTON A E,STEBBING J,et al.Gene of the month:Nanog [J].Journal of Clinical Pathology,2015,68(10):763-770.
[7] PAN Qiong,MENG Linkun,YE Jun,et al.Transcriptional repression of miR-200 family members by Nanog in colon cancer cells induces epithelial-mesenchymal transition (EMT)[J].Cancer Letters,2017,392(1):26-38.
[8] HYSLOP L,STOJKOVIC M, ARMSTRONG L, et al.Downregulation of Nanog induces differentiation of human embryonic stem cells to extraembryonic lineages[J].Stem Cell,2010,23(8):1 035-1 043.
[9] YOU Linping,GUO Xin,HUANG Yuenan.Correlation of cancer stem-cell markers Oct4,Sox2,and Nanog with clinicopathological features and prognosis in operative patients with rectal cancer[J].Yonsei Medical Journal,2018,59(1):35-40.
[10] SHAHINI A,MISTRIOTIS P,ASMANI M,et al.Nanog restores contractility of mesenchymal stem cell-based senescent microtissues[J].Tissue Engineering Part A,2017,23(11-12):535-545.
[11] 李军,吕长荣,窦琳,等.小鼠Nanog基因原核表达载体的构建及表达[J].中国农业科学,2007,40(2):373-378.
[12] 张经余,王爱娥,李美香,等.人NanogP8蛋白的原核表达及多克隆抗体的制备[J].中国生物工程杂志,2009,29(3):30-35.
[13] SU Linqian,JIANG Qi,YU Lingang,et al.Enhanced extracellular production of recombinant proteins in Escherichia coli by co-expression with Bacillus cereus phospholipase C[J].Microbial Cell Factories,2017,16(1):24-30.
[14] BRUNA A,VICTÓRIA M,FELIPE O,et al.Production of recombinant β-galactosidase in bioreactors by fed-batch culture using DO-stat and linear control[J].Biocatalysis and Biotransformation,2019,37(1):3-9.
[15] RUAN ALESSANDRO, REN Chang,QUAN Shu.Conversion of the molecular chaperone Spy into a novel fusion tag to enhance recombinant protein expression[J].Journal of Biotechnology,2020,307(none):131-138.
[16] ZHANG Hucheng,YANG Jun,YANG Guowei,et al.Production of recombinant protein G through high-density fermentation of engineered bacteria as well as purification[J].Molecular medicine reports,2015,12(2):31-32.
[17] PUGH R J.Bubble and foam chemistry [M].Cambridge:Cambridge University Press,2016:331-371.
[18] RAÙL E P,JOSÉ G S,DIAZ E N,et al.Scaling-up fermentation of Escherichia coli for production of recombinant P64k protein from Neisseria meningitidis[J].Electronic Journal of Biotechnology,2018,33(2):16-23.
[19] MAN Zaiwei,RAO Zhiming,CHENG Yipeng,et al.Enhanced riboflavin production by recombinant Bacillus subtilis RF1 through the optimization of agitation speed[J].World Journal of Microbiology and Biotechnology,2014,30(2):661-7.
[20] YANG Yalin,TIAN Zigang,DA Teng,et al.High-level production of a candidacidal peptide lactoferrampin in Escherichia coli by fusion expression[J].Journal of Biotechnology,2009,139(4):326-331.
[21] 王传振,刘晓鹏,崔怡,等.猪转录因子Nanog高效表达、多克隆抗体制备及其应用[J].农业生物技术学报,2016,24(1):35-43.
[22] 苏鹏,龚国利.优化大肠杆菌表达外源蛋白的研究进展[J].生物技术通报,2017,33(2):16-23.
[23] 高霖,朱莉,杨泽林,等.高分子质量聚唾液酸生产菌株诱变筛选及其发酵优化[J].食品与发酵工业,2019,45(10):22-28.
[24] CHEN X,LIU L,LI J,et al.Improved glucosamine and N-acetylglucosamine production by an engineered Escherichia coli via step-wise regulation of dissolved oxygen level[J].Bioresource Technology,2012,110(none):534-538.
[1] 李晨晨, 李梦丽, 江波, 张涛. 2'-岩藻糖基乳糖的生物合成菌株构建及发酵条件研究[J]. 食品与发酵工业, 2021, 47(3): 10-17.
[2] 彭文坚, 张娟, 刘松. 采用组合策略提高灰色链霉菌胰蛋白酶在毕赤酵母中的表达[J]. 食品与发酵工业, 2021, 47(20): 15-21.
[3] 张博, 史永吉, 杨辉, 吴梓丹, 陈开, 蔡雪, 柳志强, 郑裕国. 通过发酵优化提高大肠杆菌生产L-半胱氨酸产量[J]. 食品与发酵工业, 2021, 47(18): 175-180.
[4] 马巍, 邹祥. 发酵法生产L-岩藻糖的研究进展[J]. 食品与发酵工业, 2021, 47(16): 308-312.
[5] 段晓莉, 江波, 张涛. 产阿魏酸酯酶菌株的筛选与产酶条件优化[J]. 食品与发酵工业, 2021, 47(12): 154-160.
[6] 庞远祥, 谢远红, 金君华, 刘慧, 张红星. 低嘌呤、高纳豆激酶活性枯草芽孢杆菌SH21筛选及发酵条件优化[J]. 食品与发酵工业, 2021, 47(11): 194-199.
[7] 楼志华, 刘翔, 张劲楠. 嗜糖假单胞菌麦芽四糖酶基因在地衣芽孢杆菌中的异源表达[J]. 食品与发酵工业, 2021, 47(1): 50-54.
[8] 张大伟, 刘德华, 黄钦钦, 田亚平. 食品级高产亮氨酸氨肽酶重组Bacillus subtilis的构建和发酵优化[J]. 食品与发酵工业, 2020, 46(8): 1-6.
[9] 郭宵, 安亚静, 柴成程, 路福平, 刘夫锋. 大肠杆菌分泌表达裂解性多糖单加氧酶发酵条件的优化[J]. 食品与发酵工业, 2020, 46(5): 31-37.
[10] 蒋秋琪, 吕雪芹, 崔世修, 刘延峰, 堵国成, 刘龙. 代谢工程改造毕赤酵母发酵生产谷胱甘肽[J]. 食品与发酵工业, 2020, 46(17): 9-14.
[11] 冒鑫哲, 彭政, 周冠宇, 堵国成, 张娟. 枯草芽孢杆菌高产角蛋白酶发酵条件优化[J]. 食品与发酵工业, 2020, 46(17): 138-144.
[12] 吴鹤云, 张悦, 蒋帅, 田道光, 谢希贤, 陈宁. 木糖和葡萄糖共发酵生产L-组氨酸[J]. 食品与发酵工业, 2020, 46(16): 115-120.
[13] 李鸿雁, 陆健, 李晓敏. 阿拉伯呋喃糖苷酶的重组表达及其发酵工艺优化[J]. 食品与发酵工业, 2020, 46(15): 14-20.
[14] 杨亚楠, 宿玲恰, 吴敬. 重组Bacillus subtilis产麦芽四糖淀粉酶的发酵优化及麦芽四糖制备[J]. 食品与发酵工业, 2019, 45(8): 44-49.
[15] 王希晖, 刘洪玲, 隋松森, 杨少杰, 王瑞明, 王腾飞. 海藻糖合酶在枯草芽孢杆菌中的高效表达[J]. 食品与发酵工业, 2019, 45(7): 29-36.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn