Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (17): 264-270    DOI: 10.13995/j.cnki.11-1802/ts.024202
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
食源性致病菌快速检测研究进展
孙颖颖, 董鹏程, 朱立贤, 张一敏, 罗欣, 毛衍伟*
山东农业大学 食品科学与工程学院,山东 泰安,271018
Research progress in rapid detection of foodborne pathogens
SUN Yingying, DONG Pengcheng, ZHU Lixian, ZHANG Yimin, LUO Xin, MAO Yanwei*
College of Food Science and Engineering,Shandong Agricultural University,Taian 271018,China
下载:  HTML   PDF (1038KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 食源性致病菌是影响食品安全的重要因素,会引发广泛而严重的公共卫生问题。传统的平板菌落计数法是目前检测致病菌准确且通用的方法,但它耗时费力,具有明显的滞后性。因此,开发快速、准确检测食品中的致病菌和毒素的技术并提供实时结果,对保证食品安全和减轻食源性疾病具有重要意义。近年来,各种食源性致病菌的快速检测和鉴定方法相继出现和发展。该文总结了振动光谱学、聚合酶链式反应(polymerase chain reaction,PCR)和生物传感器3种最有潜力的检测方法的原理、特点和在食品产业中的应用,以期为快速检测技术的研发提供思路,并为食品产业选择致病菌的快速检测技术提供指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙颖颖
董鹏程
朱立贤
张一敏
罗欣
毛衍伟
关键词:  食源性致病菌  快速检测  振动光谱  聚合酶链式反应  生物传感器    
Abstract: Foodborne pathogens are important factors that affect food safety and bring about extensive and serious public health problems. The traditional quantitative plating technique is accurate and commonly used, but it is time-consuming and laborious, with obvious time lag. Therefore, it is of great significance to develop rapid and accurate detection technology of pathogens and toxins in food and provide real-time results to ensure food safety and reduce foodborne diseases. In recent years, lots of rapid detection and identification methods for food borne pathogens have emerged and are developed. Among which, vibration spectroscopy, polymerase chain reaction (PCR) and biosensor are considered to possess the biggest potential. Their principles, characteristics and applications in food industry were summarized to provide references for the research and development of rapid detection technology, and to provide guidance for the selection of rapid detection technology for food industry.
Key words:  foodborne pathogens    rapid detection    vibration spectrum    polymerase chain reaction(PCR)    biosensor
收稿日期:  2020-04-13      修回日期:  2020-05-12           出版日期:  2020-09-15      发布日期:  2020-10-14      期的出版日期:  2020-09-15
基金资助: 山东省重点研发计划项目(2018GGX108004);现代农业产业技术体系建设专项资金资助-肉牛项目(CARS-37);山东省现代农业产业技术体系创新团队建设专项资金项目(sdait-09-09);山东省“双一流”奖补资金项目(SYL2017XTTD12)
作者简介:  硕士研究生(毛衍伟副教授为通讯作者,E-mail:maoyanwei@163.com)
引用本文:    
孙颖颖,董鹏程,朱立贤,等. 食源性致病菌快速检测研究进展[J]. 食品与发酵工业, 2020, 46(17): 264-270.
SUN Yingying,DONG Pengcheng,ZHU Lixian,et al. Research progress in rapid detection of foodborne pathogens[J]. Food and Fermentation Industries, 2020, 46(17): 264-270.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.024202  或          http://sf1970.cnif.cn/CN/Y2020/V46/I17/264
[1] DANIELLE M T,ELLVN P M,PARTICIA M G,et al.Preliminary incidence and trends of infections with pathogens transmitted commonly through food—Foodborne diseases active surveillance network,10 US.sites,2015—2018[J].American Journal of Transplantation,2019,19(6):1 859-1 863.
[2] WEI Caijiao,ZHONG Junliang,HU Ting,et al.Simultaneous detection of Escherichia coli O157:H7,Staphylococcus aureus,and Salmonella,by multiplex PCR in milk[J].Biotech,2018,8(1):76.
[3] MINAROVICOVA J,WEGHOVA A,KACLIKOVA E.Evaluation of DNA extraction methods for culture-independent Real-Time PCR-Based detection of Listeria monocytogenes in Cheese[J].Food Analytical Methods,2020,13(3):667-677.
[4] 韩进兰,食源性疾病监测中病原微生物检验结果分析[J].临床检验杂志电子版,2020,9(1):122.
[5] JONES T F,YACKLEY J,Foodborne disease outbreaks in the United States:A historical overview[J].Foodborne Pathogens & Disease,2018,15(1):11-15.
[6] ZHAO Xihong,LI Mei,LIU Yao.Microfluidic-based approaches for foodborne pathogen detection[J].Microorganisms,2019,7(10):381.
[7] FARKAS K,MANNION F,HILLARY S,et al.Emerging technologies for the rapid detection of enteric viruses in the aquatic environment[J].Current Opinion in Environmental Science & Health,2020,16:1-6.
[8] KODOGIANNIS,VASSIILIS S.Application of an electronic nose coupled with fuzzy-wavelet network for the detection of meat spoilage[J].Food and Bioprocess Technology,2017,10(4):730-749.
[9] MUNGROO N A,OLIVEIRA G,NEETHIRAJAN S.SERS baced point-of-care detection of food-borne pathogens[J].Microchimica Acta,2015,183(2):697-707.
[10] LORENZ B,WICHMANN C,STOCKEL S,et al.Cultivation-free Raman spectroscopic investigations of bacteria[J].Trends in Microbiology,2017,25(5):413-424.
[11] ASSAF A,COEDELLA C B Y,THOUAND G.Raman spectroscopy applied to the horizontal methods ISO 6579:2002 to identify Salmonella spp. in the food industry[J].Analytical and Bioanalytical Chemistry,2014,406(20):4 899-4 910.
[12] MEISEL S,STOCKEL S,ROESCH P,et al.Identification of meat-associated pathogens via Raman microspectroscopy[J].Food Microbiology,2014,38:36-43.
[13] CIALLA D,MORZ A,RENE B,et al.Surface-enhanced Raman spectroscopy(SERS):progress and trends[J].Analytical and Bioanalytical Chemistry,2012,403(1):27-54.
[14] PAHLOW S,MARZ A,SEISE B,et al.Bioanalytical application of surface and tip enhanced Raman spectroscopy[J].Engineering in Life Science,2012,12(2):131-143.
[15] LIU Shuangshuang,LI Huanhuan,HASSAN M M,et al.Amplification of Raman spectra by gold nanorods combines with chemometrics for rapid classification of four Pseudomonas[J].International Journal of Food Microbiology,2019,304:58-67.
[16] LUO B S,LIN M I N.A portable Raman system for the identification of foodborne pathogenic bacteria[J].Journal of Rapid Method & Automation in Microbiology,2008,16(3):238-255.
[17] KOGLER M,RYABCHIKOV Y U,UUSITALO S,et al.Bare laser-synthesized Au-based nanoparticles as nondisturbing surface-enhanced Raman scattering probes for bacteria identification[J].Journal of Biophotonics,2018,11(7).DOI:10.1002/jbi0.201700225.
[18] SHAPAVAL V,WALCZAK B,GOGNIES S,et al.FTIR spectroscopic characterization of differently cultivated food related yeasts[J].The Analyst,2013,138(14):4 129-4 138.
[19] DAVIS R,MAUER L J.Subtyping of Listeria monocytogenes at the halptype level by Fourier transform infrared(FT-IR) spectroscopy and multivariate statistical analysis[J].International Journal of Food Microbiology,2011,150(2-3):140-149.
[20] ERNEST B,HUANG Xingyi,YI Ren,et al.Vis-NIR hyperspectral imaging for the classification of bacterial foodborne pathogens based on pixel-wise analysis and a novel CARS-PSO-SVM model[J].Infrared Physics and Technology,2020,105.DOI:10.1016/j.infrared.2020.103220.
[21] TITO N B,RODEMANN T,POWELL S M.Use of near infrared spectroscopy to predict microbial numbers on Atlantic salmon[J].Food Microbiology,2012,32(2):431-436.
[22] DUAN Cui,CHEN Chunguang,KHAN M N,et al.Non-destructive determination of the total bacteria in flounder filet by portable near infrared spectrometer[J].Food Control,2014,48:18-22.
[23] HUANG Deqiu,ZHUANG Zhengfei,WANG Zhen,et al.Black phosphorus-Au filter paper-based three-dimensional SERS substrate for rapid detection of foodborne bacteria[J].Applied Surface Science,2019,497.DOI:10.1016/j.apsusc.2019.143825.
[24] DUAN Nuo,CHANG Boya,ZHANG Hui,et al.Salmonella typhimurium detection using a surface-enhanced Raman scattering-based aptasensor[J]International Journal of Food Microbiology, 2016,218:38-43.
[25] MULLIS K B,FALOONA F A,SCHARF S J,et al.Specific enzymatic amplification of DNA in vitro:the polymerase chain reaction[J].Food Control,2014,48:18-22.
[26] FORGHANI F,WEI Shuai,OH D H.A rapid multiplex real-time PCR high-resolution melt curve assay for the simultaneous detection of Bacillus cereus,Listeriia monocytogenes and Staphylococcus aureus in food[J].Journal of Food Protection,2016,79(5):810-815.
[27] GORDILLO R,JUAN J C,MARIA J A,et al.Development of PCR assays for detection of Escherichia coli O157:H7 in meat products[J].Meat Scinece,2011,88(4):763-773.
[28] TAYLOR T M,ELHANAFI D,DRAKE M,et al.Effect of food matrix and cell growth on PCR-based detection of Escherichia coli O157:H7 in ground beef[J].Journal of Food Protection,2005,68(2):225-232.
[29] WANG Yun,SALAZAR J K.Culture-independent rapid detection methods for bacterial pathogens and toxins in food matrices[J].Comprehensive Reviews in Food Science and Food Safety,2016,15(1):183-205.
[30] CHIANG Yucheng, TSEN Hauyang,CHEN Hsinyen,et al.Multiplex PCR and a chromogenic DNA macroarray for the detection of Listeria monocytogens,Staphylococcus aureus,Streptococcus agalactiae,Enterobacter sakazakii,Escherichia coli O157:H7,Vibrio parahaemolyticus,Salmonella spp.and Pseudomonas fluoresc[J].Journal of Microbiol Methods,2012,88(1):110-116.
[31] 曲勤凤.重要食品掺假检测技术研究鱼糜制品中主料含量的测定 (荧光 PCR 法)[D].上海:复旦大学, 2011
[32] D’SOUZA C,KUMAR B K,RAI P,et al.Application of gyrB targeted SYBR green based qPCR assay for the specific and rapid detection of Vibrio vulnificus in seafood[J].Journal of Microbiological Methods, 2019.DOI:10.1016/j.mimet.2019.105747.
[33] HSU C F,TSAI T Y,PAN T M.Use of the duplex TaqMan PCR system for detection of Shiga-like toxin-producing Escherichia coli O157[J].Journal of Clinical Microbiology, 2005,43(6):2 668-2 673.
[34] WANG Lijun,YE Chenlian,XU Hengyi,et al.Development of an SD-PMA-mPCR assay with internal amplification control for rapid and sensitive detection of viable Salmonella spp.Shigella spp.and Staphylococcus aureus in food products[J].Food Control,2015,57:314-320.
[35] KIM H J,LEE H J,LEE K H,et al.Simultaneous detection of pathogenic Vibrio species using multiplex realtime PCR[J].Food Control,2012,23:491-498.
[36] MARTINON A,WILKINSON M G.Selection of optimal primer sets for use in a duplex sybr green-based,real-time polymerase chain reaction protocol for the detection of Listeria monocytogenes and Staphyloccocus aureus in foods[J].Food Saf,2011,31:297-312.
[37] JAYAN H,PU Hongbin,SUN Dawen.Recent development in rapid detection techniques for microorganism activities in food matrices using bio-recognition:A review[J].Trends in Food Science & Technology, 2020:233-246.DOI:10.1016/j.tifs.2019.10.007.
[38] KHANSILI N,RATTU G,KRISHNA P M.Label-free optical biosensors for food and biological sensor applications[J].Sensors and Actuators B:Chemical,2018,265:35-49.
[39] KUSHWAHA A S,ANIL K,RAJEEV K,et al.Zinc oxide,gold and graphene-based surface plasmon resonance (SPR) biosensor for detection of Pseudomonas like bacteria:A comparative study[J].Optik,2018:697-707.DOI:10.1016/j.ijleo.2018.07.066.
[40] SRISA-ART M,BOEHLE K E,GEISS B J,et al.Highly sensitive detection of Salmonella typhimurium using a colorimetric paper-based analytical device coupled with immunomagnetic separation[J].Analytical Chemistry,2018,90(1):1 035-1 043.
[41] SHARMA H,MUTHARASAN R.Review of biosensors for foodborne pathogens and toxins[J].Sensors and Actuators B:Chemical,2013,183:535-549.
[42] MAJDINASAB M,HAYAT A,MARTY J L.Aptamer-based assays and aptasensors for detection of pathogenic bacteria in food samples[J].TrAC Trends in Analytical Chemistry,2018,107:60-77.
[43] VASQUEZ G,REY A,RIVERA C,et al.Amperometric biosensor based on a single antibody of dual function for rapid detection of Streptococcus agalactiae[J].Biosensors and Bioelectronics,2017,87:453-458.
[44] CHEN Yuhan,GUO Shuliang,ZHAO Min,et al.Amperometric DNA biosensor for Mycobacterium tuberculosis detection using flower-like carbon nanotubes-polyaniline nanohybrid and enzyme-assisted signal amplification strategy[J].Biosensors and Bioelectronics,2018,119:215-220.
[45] LI Yong,MUSTAPHA A.Simultaneous detection of Escherichia coli O157:H7,Salmonella,and Shigella in apple cider and produce by a multiplex PCR[J].Food Prot,2004,67:27-33.
[46] KEARNS H,GOODACRE R,JAMIESON L,et al.SERS detection of multiple anti-microbial resistant pathogens using nanosensors[J].Analytical Chemistry,2017,89(23):12 666-12 673.
[47] CAREY J R,SUSLICK K S,HULKOWER K I,et al.Rapid identification of bacteria with a disposable colorimetric sensing array[J].Journal of the American Chemical Society,2011,133(19):7 571-7 576.
[48] LIN Yuehhui,CHEN Szhau,CHUANG Yaochen,et al.Disposable amperometric immunosensing strips fabricated by Au nanoparticles-modified screenprinted carbon electrodes for the detection of foodborne pathogen Escherichia coli O157:H7[J].Biosens Bioelectron,2008,23:1 832-1 837.
[49] PAL S,YING W,ALOCILIA E C,et al.Sensitivity and specificity performance of a direct-charge transfer biosensor for detecting Bacillus cereus in selected food matrices[J].Biosystems Engineering,2008,99:46.
[1] 董晶, 卢鑫, 郭威, 杨倩, 张伟. 等温扩增技术在食源性致病菌检测中的研究进展[J]. 食品与发酵工业, 2021, 47(8): 256-260.
[2] 王嫦嫦, 郑思洁, 战艺芳, 夏定, 白向茹, 王利华, 姚琪, 李婷婷. 结合纳米材料的适配体传感器在重金属检测中的应用研究进展[J]. 食品与发酵工业, 2021, 47(8): 283-289.
[3] 钱蕾, 刘延峰, 李江华, 刘龙, 堵国成. 适应性进化和改造质粒稳定性促进枯草芽孢杆菌合成N-乙酰神经氨酸[J]. 食品与发酵工业, 2021, 47(5): 1-6.
[4] 徐文文, 梁玉林, 王云霞, 刘秀, 尹建军, 周广军, 宋全厚, 丁梦璇, 周鹏飞. 二重环介导等温扩增法快速检测乳粉中沙门氏菌和金黄色葡萄球菌[J]. 食品与发酵工业, 2021, 47(2): 241-246.
[5] 张明娟, 王娟, 袁磊, 肖昭竞, 龙梅, 李根容. 多重聚合酶链式反应技术在食源性致病菌检测上的应用研究进展[J]. 食品与发酵工业, 2021, 47(2): 305-310.
[6] 姜海瀛, 张志杰, 王艳双, 张莉, 高丽君, 李明成, 孙丽媛, 张丽华. 牛肉PCR-核酸试纸条快速鉴定方法的建立及试剂盒的研制[J]. 食品与发酵工业, 2021, 47(18): 275-281.
[7] 吴天赐, 李楠, 张娟, 余意, 刘振民. 原料乳中产蛋白酶假单胞菌双重PCR检测体系建立和评价[J]. 食品与发酵工业, 2021, 47(14): 251-256.
[8] 华彦涛, 刘波, 赵炫, 尹凯丹, 马楠楠, 袁利鹏. 微孔侧流免疫层析法检测农产品中2, 4-二氯苯氧乙酸残留[J]. 食品与发酵工业, 2021, 47(12): 244-249.
[9] 易昌毓, 罗自生, 潘响亮, 林星宇. 基于数字化环介导等温扩增技术的牛乳中大肠杆菌快速精准定量分析[J]. 食品与发酵工业, 2021, 47(11): 241-246.
[10] 吴任之, 胡欣洁, 韩国全, 易艳, 舒佳新, 曹阳, 余东梅, 赵俊梅, 张翼, 张雨薇. 食源性金黄色葡萄球菌快速检测方法的研究进展[J]. 食品与发酵工业, 2021, 47(10): 291-296.
[11] 万晓楠, 畅晓晖, 齐玮, 高欣, 乔彬, 杨向莹, 李小林, 张惠媛, 石嵩, 张捷, 周熙成. 基于近红外免疫层析技术快速检测食源性甲型肝炎病毒[J]. 食品与发酵工业, 2020, 46(7): 213-217.
[12] 庄蓓蓓, 祁钊, 周紫卉, 黄昊, 宋祥军, 邵颖, 涂健. 基于多重聚合酶链式反应和表面增强拉曼光谱技术的食源性病原菌检测模型的建立与比较[J]. 食品与发酵工业, 2020, 46(7): 207-212.
[13] 周新丽, 申炳阳, 高丽娟, 孔兵, 叶嘉明. 用于五种动物源性成分快速检测的离心式微流控芯片系统研制[J]. 食品与发酵工业, 2020, 46(3): 229-234.
[14] 胡元庆, 沈子晨, 李凤霞, 吕琳雪, 周赞虎. 基于blaCARB-17基因建立水产品中副溶血弧菌的环介导等温扩增技术检测方法[J]. 食品与发酵工业, 2020, 46(23): 198-206.
[15] 周胜虎, 毛银, 邓禹. 发酵过程中时空水平的动态调控策略研究进展[J]. 食品与发酵工业, 2020, 46(21): 277-283.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn