Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (21): 9-15    DOI: 10.13995/j.cnki.11-1802/ts.024232
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
来源于Rhodohalobacter barkolensis的昆布多糖酶RbLam16的重组表达及生产条件优化
周海岩1,2, 周建宝1,2, 易晓男1,2, 李勉3, 柳志强1,2*
1(浙江省生物有机合成技术研究重点实验室(浙江工业大学),浙江 杭州,310014);
2(手性生物制造国家地方联合工程研究中心(浙江工业大学),浙江 杭州,310014);
3(浙江华康药业股份有限公司,浙江 开化,324302)
Expression and optimized production of laminarinase RbLam16 from Rhodohalobacter barkolensis
ZHOU Haiyan1,2, ZHOU Jianbao1,2, YI Xiaonan1,2, LI Mian3, LIU Zhiqiang1,2*
1(Key Laboratory of Bioorganic Synthesis of Zhejiang Province (Zhejiang University of Technology), Hangzhou 310014, China);
2(National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals (Zhejiang University of Technology), Hangzhou 310014, China);
3(Zhejiang Huakang Pharmaceutical Co., Ltd., Kaihua 324302, China)
下载:  HTML   PDF (4729KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为实现昆布多糖酶的异源表达以及提高工程菌的产酶水平,将来源于Rhodohalobacter barkolensis的昆布多糖酶RbLam16基因经密码子优化后克隆至pPIC9K质粒,并重组到毕赤酵母GS115中。分泌表达的重组酶经镍柱纯化后对其酶学性质进行表征;为提高酶的表达量,对重组毕赤酵母菌的发酵条件进行了优化。结果表明:RbLam16能够在毕赤酵母GS115中高效分泌表达;以来源于海带的昆布多糖作为水解底物时,RbLam16最适反应温度及pH分别为55 ℃和pH 7.0;通过热稳定性及pH稳定性研究发现,RbLam16在55 ℃保温30 min后,残留酶活力在90%以上;在50 mmol/L Tris-HCl缓冲液(pH 7.0)中保存24 h后残留酶活力高达90%;金属离子Mn2+和Co2+对酶活力有促进作用,而Cu2+、乙二胺四乙酸和十二烷基硫酸钠可严重抑制酶活力。发酵条件优化结果显示,在发酵液初始pH为6.0、培养温度为28 ℃以及每24 h添加体积分数1.5%的甲醇条件下发酵120 h,发酵上清液中酶活力达到27.42 U/mL,与初始酶活力相比提高了26.42%。RbLam16的高效催化水平以及较高的热稳定性和酸碱耐受力为其在食品、能源开发等领域的应用提供更多的可能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周海岩
周建宝
易晓男
李勉
柳志强
关键词:  昆布多糖酶  毕赤酵母  异源表达  酶学性质    
Abstract: For heterologous expression of the laminarinase RbLam16 from Rhodohalobacter barkolensis, the codon optimized and synthesized gene rblam16 was cloned into pPIC9K and transformed into Pichia pastoris GS115. The recombinant RbLam16 was prepared, purified and biochemically characterized. The results showed that, with laminarin from Laminaria japonica as the substrate, the recombinant RbLam16 exhibited the optimal activities at 55℃ and pH 7.0. It showed high thermostability (above 90% residual activity) at 55°C after incubation for 30 min and pH stability (up to 90% residual activity) after incubation at pH 7.0) and 4℃ for 24 h. The activity of RbLam16 was improved by Mn2+ and Co2+; but greatly inhibited by Cu2+, EDTA and SDS . After 120 h cultivation with initial pH 6.0, at 28℃, with the methanol addition volume of 1.5% every 24 h, the activity of RbLam16 reached 27.42 U/mL, i.e. 26.42% higher than that of the control. The high catalytic activity, remarkable thermal stability and pH tolerance provide more possibilities for its application in food and energy fields.
Key words:  laminarinase    Pichia pastoris    heterologous expression    enzymatic properties
收稿日期:  2020-04-17      修回日期:  2020-05-14           出版日期:  2020-11-15      发布日期:  2020-12-11      期的出版日期:  2020-11-15
基金资助: 浙江省引进培育领军型创新创业团队项目(2018R01014);浙江工业大学研究生教学改革项目(2018114)
作者简介:  博士,副教授(柳志强教授为通讯作者,E-mail:microliu@zjut.edu.cn)
引用本文:    
周海岩,周建宝,易晓男,等. 来源于Rhodohalobacter barkolensis的昆布多糖酶RbLam16的重组表达及生产条件优化[J]. 食品与发酵工业, 2020, 46(21): 9-15.
ZHOU Haiyan,ZHOU Jianbao,YI Xiaonan,et al. Expression and optimized production of laminarinase RbLam16 from Rhodohalobacter barkolensis[J]. Food and Fermentation Industries, 2020, 46(21): 9-15.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.024232  或          http://sf1970.cnif.cn/CN/Y2020/V46/I21/9
[1] TAKEDA H,YONEYAMA F,KAWAI S,et al.Bioethanol production from marine biomass alginate by metabolically engineered bacteria[J].Energy & Environmental Science,2011,4(7):2 575-2 581.
[2] MOTONE K,TAKAGI T,SASAKI Y,et al.Direct ethanol fermentation of the algal storage polysaccharide laminarin with an optimized combination of engineered yeasts[J].Journal of Biotechnology,2016,231:129-135.
[3] PEREZ C M T,PAJARES I G,ALCANTARA V A,et al.Bacterial laminarinase for application in ethanol production from brown algae Sargassum sp.using halotolerant yeast[J].Biofuel Research Journal,2018,5(1):792-797.
[4] QIN H M,MIYAKAWA T,INOUE A,et al.Laminarinase from Flavobacterium sp.reveals the structural basis of thermostability and substrate specificity[J].Scientific Reports,2017,7(1):11 425.
[5] LOMBARD V,GOLACONDA RAMULU H,DRULA E,et al.The carbohydrate-active enzymes database (CAZy) in 2013[J].Nucleic Acids Research,2014,42(D1):D490–D495.
[6] BURKHARDT C,SCHÄFERS C,CLAREN J,et al.Comparative analysis and biochemical characterization of two endo-β-1,3-glucanases from the thermophilic bacterium Fervidobacterium sp.[J].Catalysts,2019,9(10):830-845.
[7] LEE Y,LEE J H,SHIM W B,et al.Molecular cloning,over-expression and enzymatic characterization of an endo-acting β-1,3-glucanase from marine bacterium Mesoflavibacter zeaxanthinifaciens S86 in Escherichia coli[J].Ocean Science Journal,2014,49(4):425-432.
[8] KUSAYKIN M I,BELIK A A,KOVALCHUK S N,et al.A new recombinant endo-1,3-β-D-glucanase from the marine bacterium Formosa algae KMM 3553:Enzyme characteristics and transglycosylation products analysis[J].World Journal of Microbiology and Biotechnology,2017,33(2):40.
[9] 王伟伟,唐鸿志,许平.嗜盐菌耐盐机制相关基因的研究进展[J].微生物学通报,2015,42(3):550-558.
[10] ALMEIDA E,DIAS T V,FERRAZ G,et al.Culturable bacteria from two Portuguese salterns:Diversity and bioactive potential[J].Antonie Van Leeuwenhoek,2020,113(4):459-475.
[11] THOMAS F,HEHEMANN J H,REBUFFET E,et al.Environmental and gut Bacteroidetes:The food connection[J].Frontiers in Microbiology,2011,2:93.
[12] HAN S B,YU Y H,JU Z,et al.Rhodohalobacter barkolensis sp.nov.,isolated from a saline lake and emended description of the genus Rhodohalobacter[J].International Journal of Systematic and Evolutionary Microbiology,2018,68(6):1 949-1 954.
[13] CONSORTIUM T U.Uniprot:A worldwide hub of protein knowledge[J].Nucleic Acids Research,2018,47(D1):D506-D515.
[14] 朱泰承,李寅.毕赤酵母表达系统发展概况及趋势[J].生物工程学报,2015,31(6):929-938.
[15] PETERSEN T N,BRUNAK S,VON HEIJNE G,et al.SignaIP 4.0:Discriminating signal peptides from transmembrane regions[J].Nature Methods,2011,8(10):785-786.
[16] WILKINS M R,GASTEIGER E,BAIROCH A,et al.Protein identification and analysis tools in the ExPASy server[J].Methods in Molecular Biology,1999,112(112):531-552.
[17] MADEIRA F,PARK Y M,LEE J,et al.The EMBL-EBI search and sequence analysis tools APIs in 2019[J].Nucleic Acids Research,2019,47(W1):W636-W641.
[18] ROBERT X,GOUET P.Deciphering key features in protein structures with the new ENDscript server[J].Nucleic Acids Research,2014,42(W1):W320-W324.
[19] MILLER L G.Use of dinitrosalicylic acid reagent for determination of reducing sugar[J].Analytical Chemistry,1959,31(3):426-428.
[20] BLEICHER L,PRATES E T,GOMES T C,et al.Molecular basis of the thermostability and thermophilicity of laminarinases:X-ray structure of the hyperthermostable laminarinase from Rhodothermus marinus and molecular dynamics simulations[J].The Journal of Physical Chemistry B,2011,115(24):7 940-7 949.
[21] FIBRIANSAH G,MASUDA S,KOIZUMI N,et al.The 1.3 Å crystal structure of a novel endo-β-1,3-glucanase of glycoside hydrolase family 16 from alkaliphilic Nocardiopsis sp.strain F96[J].Proteins,2007,69(3):683-690.
[22] ILARI A,FIORILLO A,ANGELACCIO S,et al.Crystal structure of a family 16 endoglucanase from the hyperthermophile Pyrococcus furiosus-structural basis of substrate recognition[J].FEBS Journal,2009,276(4):1 048-1 058.
[23] JENG W Y,WANG N C,LIN C T,et al.Crystal structures of the laminarinase catalytic domain from Thermotoga maritima MSB8 in complex with inhibitors:Essential residues forβ-1,3- and β-1,4-glucan selection[J].Journal of Biological Chemistry,2011,286(52):45 030-45 040.
[24] MITSUYA D,SUGIYAMA T,ZHANG S,et al.Enzymatic properties and the gene structure of a cold-adapted laminarinase from Pseudoalteromonas species LA[J].Journal of Bioscience and Bioengineering,2018,126(2):169-175.
[25] ZHOU J,CHEN J,LI Z,et al.Enzymatic properties of a multi-specific β-(1,3)-glucanase from Corallococcus sp.EGB and its potential antifungal applications[J].Protein Expression and Purification,2019,164:105 481.
[26] YI P,YAN Q,JIANG Z,et al.A first glycoside hydrolase family 50 endo-β-1,3-D-glucanase from Pseudomonas aeruginosa[J].Enzyme and Microbial Technology,2018,108:34-41.
[27] 丁健,罗洪镇,史仲平.典型工业发酵过程环境变化下的细胞自适应行为与系统优化[J].生物工程学报,2019,35(10):1 986-2 002.
[1] 高宇豪, 吴勇杰, 朱亚鑫, 付静, 徐建国, 王松涛, 徐国强, 张晓梅, 史劲松, 许正宏. 产谷胱甘肽毕赤酵母工程菌的构建及能量调控[J]. 食品与发酵工业, 2021, 47(7): 21-26.
[2] 陶大炜, 宁喜斌. 产α-环糊精葡萄糖基转移酶的菌株筛选、鉴定与酶学性质的初步研究[J]. 食品与发酵工业, 2021, 47(6): 145-151.
[3] 彭燕鸿, 苏爱秋, 黄伟文, 蓝素桂, 杨天云, 谭强. 微生物嗜热脂肪酶研究进展[J]. 食品与发酵工业, 2021, 47(6): 289-294.
[4] 杨胜远, 林谦, 刘淑敏, 苏巧云, 黄慧玲. 屎肠球菌源谷氨酸脱羧酶的制备及其酶学性质研究[J]. 食品与发酵工业, 2021, 47(5): 28-34.
[5] 吕奎, 贾禄强, 戴京京, 丁健. 通用型毕赤酵母高密度培养策略的网络共享技术[J]. 食品与发酵工业, 2021, 47(5): 92-98.
[6] 钱晓芬, 吴涛, 赵理想, 孙杰, 汪钊, 魏春. 基因拷贝数对重组毕赤酵母的牛乳铁蛋白功能片段表达及细胞存活率的影响[J]. 食品与发酵工业, 2021, 47(4): 1-6.
[7] 宋婷, 王帅静, 汪沉, 吕育财, 罗华军, 郭金玲, 龚大春. 近平滑假丝酵母ATCC 7330羰基还原酶CpCR的表达及酶学性质研究[J]. 食品与发酵工业, 2021, 47(3): 18-24.
[8] 叶德晓, 黄佳俊, 卢宇靖, 林育成, 李慧灵, 谭景航, 周金林. α-L-鼠李糖苷酶AnRhaE在毕赤酵母中的表达及应用[J]. 食品与发酵工业, 2021, 47(3): 25-30.
[9] 于洁, 徐勤茜, 李子院, 刘红艳, 郝再彬, 李海云. 虎杖内生真菌Aspergillus aculeatus HZ001产β-葡萄糖苷酶的酶学特性[J]. 食品与发酵工业, 2021, 47(3): 31-35.
[10] 包怡, 胡友明, 朱林江, 陆跃乐, 陈小龙. 己糖氧化酶的研究进展[J]. 食品与发酵工业, 2021, 47(3): 218-223.
[11] 楼志华, 刘翔, 张劲楠. 嗜糖假单胞菌麦芽四糖酶基因在地衣芽孢杆菌中的异源表达[J]. 食品与发酵工业, 2021, 47(1): 50-54.
[12] 魏万涛, 李梦丽, 江波, 张涛. L-岩藻糖激酶/GDP-L-岩藻糖焦磷酸化酶的克隆表达及酶学性质研究[J]. 食品与发酵工业, 2020, 46(9): 18-24.
[13] 张庆芳, 王浚晨, 于爽, 刘春莹, 迟雪梅, 迟乃玉. 人体肠道中产尿酸氧化酶细菌的筛选、鉴定与酶学性质研究[J]. 食品与发酵工业, 2020, 46(8): 34-39.
[14] 宋丽丽, 闻格, 霍姗浩, 胡晓龙, 杨旭, 张志平. 白酒酒糟中产纤维素酶细菌的分离筛选和酶学性质研究[J]. 食品与发酵工业, 2020, 46(7): 43-49.
[15] 郑丹妮, 柏玉香, 纪杭燕, 李晓晓, 王禹, 蔣彤, 金征宇. γ-CGTase酶学性质及产物特异性影响因素[J]. 食品与发酵工业, 2020, 46(5): 38-45.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn