Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (21): 127-132    DOI: 10.13995/j.cnki.11-1802/ts.024347
  生产与科研应用 本期目录 | 过刊浏览 | 高级检索 |
优化碳源提升法夫酵母虾青素产量和占类胡萝卜素比例
孙新强1, 陈克杰2*, 杨一恭2, 刘燕2, 周旭燕2, 邵东2, 徐作武2, 王小平2
1(浙江昌海制药有限公司,浙江 绍兴,310032);
2(浙江医药股份有限公司新昌制药厂,浙江 绍兴,312500)
Optimized carbon source increased the titer of astaxanthin and the astaxanthin-to-carotenoid ratio in Phaffia rhodozyma
SUN Xinqiang1, CHEN Kejie2*, YANG Yigong2, LIU Yan2, ZHOU Xuyan2, SHAO Dong2, XU Zuowu2, WANG Xiaoping2
1(Zhejiang Changhai Pharmaceutical Co.,Ltd.,Shaoxing 310032, China);
2(Zhejiang Medicine Co.,Ltd. Xinchang Pharmaceutical Factory,Shaoxing 312500,China)
下载:  HTML   PDF (2195KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为进一步提升法夫酵母虾青素产量和虾青素占类胡萝卜素比例,考察了大宗碳源及其组合对法夫酵母细胞生长和虾青素生产的影响,并在70 L发酵罐上进行配比确定,在10 m3发酵罐上进行中试放大。结果表明:有利于细胞增殖的碳源为糖蜜、葡萄糖、麦芽糊精和麦芽糖浆,有利于类胡萝卜素合成的为麦芽糊精、麦芽糖浆、淀粉水解液和蔗糖,有利于虾青素合成的为麦芽糊精、淀粉水解液和麦芽糖浆;不同碳源组合中,糖蜜或葡萄糖与麦芽糊精组合时虾青素产量最高,分别达到 (58.7±1.2)、(55.1±0.8) μg/mL;在70 L发酵罐中,葡萄糖和麦芽糊精质量比为1∶1时较佳,虾青素产量和干菌体虾青素含量分别为 (341.0±7.2) μg/mL和4.08 mg/g(细胞干重);在10 m3发酵罐中进行工艺放大,虾青素产量和虾青素占类胡萝卜素比例分别为 (360.3±0.8) μg/mL和42.2%,干菌体虾青素含量为3.88 mg/(g细胞干重),稍低于小试。该研究确定了法夫酵母虾青素生产的碳源种类和混合补加比例,为虾青素商业化生产提供了重要参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙新强
陈克杰
杨一恭
刘燕
周旭燕
邵东
徐作武
王小平
关键词:  法夫酵母  虾青素  碳源优化  糖蜜  麦芽糊精    
Abstract: To increase the titer of astaxanthin and the astaxanthin-to-carotenoid ratio in Phaffia rhodozyma fermentation, the types of bulk carbon sources and their combinations were investigated . The ratio of glucose to maltodextrin was determined in a 70 L fermenter, and the optimized process was scaled up in a 10 m3 fermenter. The results showed that molasses, glucose, maltodextrin and maltose syrup were favorable for the growth of P. rhodozyma, maltodextrin, maltose syrup, starch hydrolysate and sucrose were beneficial to the synthesis of carotenoids, while maltodextrin, starch hydrolysate and maltose syrup facilitated the production of astaxanthin. Maltodextrin combined with molasses or glucose resulted in the highest astaxanthin titers of (58.7±1.2) and (55.1±0.8) μg/mL, respectively. The optimal ratio of glucose to maltodextrin of 1∶1 in a 70 L fermenter yielded an astaxanthin titer of (341.0±7.2) μg/mL, which is 4.08 mg/g dry cell weight. When scaled up in a 10 m3 fermenter, the titer and the astaxanthin-to-carotenoid ratio were (360.3±0.8) μg/mL and 42.2%, respectively, while the astaxanthin content toward dry cell weight was 3.88 mg/g, which was slightly lower than that of lab scale fermentation. In summary, the types of carbon sources and their compositions were optimized for astaxanthin production, the results provided important reference for commercial production of astaxanthin.
Key words:  Phaffia rhodozyma    astaxanthin    carbon sources optimization    molasses    maltodextrin    pilot scale-up
收稿日期:  2020-04-30      修回日期:  2020-06-13           出版日期:  2020-11-15      发布日期:  2020-12-11      期的出版日期:  2020-11-15
作者简介:  硕士,高级工程师(陈克杰工程师为通讯作者,E-mail:kejiechen@163.com)
引用本文:    
孙新强,陈克杰,杨一恭,等. 优化碳源提升法夫酵母虾青素产量和占类胡萝卜素比例[J]. 食品与发酵工业, 2020, 46(21): 127-132.
SUN Xinqiang,CHEN Kejie,YANG Yigong,et al. Optimized carbon source increased the titer of astaxanthin and the astaxanthin-to-carotenoid ratio in Phaffia rhodozyma[J]. Food and Fermentation Industries, 2020, 46(21): 127-132.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.024347  或          http://sf1970.cnif.cn/CN/Y2020/V46/I21/127
[1] AMBATI R R,PHANG S M,RAVI S,et al.Astaxanthin:Sources,extraction,stability,biological activities and its commercial applications-a review[J]. Marine Drugs,2014,12(1):128-152.
[2] TAGO Y,FUJII T,WADA J,et al.Genotoxicity and subacute toxicity studies of a new astaxanthin-containing Phaffia rhodozyma extract[J]. Journal of Toxicological Sciences,2014,39(3):373-382.
[3] BELLORA N,MOLINÉ M,DAVID-PALMA M,et al.Comparative genomics provides new insights into the diversity,physiology,and sexuality of the only industrially exploited tremellomycete:Phaffia rhodozyma[J].BMC Genomics,2016,17(1):901.
[4] UKIBE K,KATSURAGI T,TANA Y,et al.Efficient screening for astaxanthin-overproducing mutants of the yeast Xanthophyllomyces dendrorhous by flow cytometry[J]. FEMS Microbiology Letters,2008,286(2):241-248.
[5] 胡向东,潘玲燕,章祺,等.复合诱变选育高产虾青素的红法夫酵母菌株[J].食品与发酵工业,2014,40(10):58-62;68.
[6] VERDOES J C,SANDMANN G,VISSER H,et al.Metabolic engineering of the carotenoid biosynthetic pathway in the yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma)[J].Applied and Environmental Microbiology,2003,69(7):3 728-3 738.
[7] YAMAMOTO K,HARA K Y,MORITA T,et al.Enhancement of astaxanthin production in Xanthophyllomyces dendrorhous by efficient method for the complete deletion of genes[J]. Microbial Cell Factories,2016,15(1):155.
[8] 谢虹,周元元,胡卫成,等.法夫酵母高产虾青素的选育及发酵条件的优化[J].中国生物工程杂志,2006,26(12):68-74.
[9] 王立梅,杜似娟,郑丽雪,等.响应面法优化高产虾青素菌株的发酵条件[J].食品科学,2009,30(21):312-315.
[10] 刘春利,沈宁燕,倪辉,等.乙醇对法夫酵母发酵合成虾青素的影响[J].食品与发酵工业,2018,44(3):1-7.
[11] 沈宁燕,肖安风,蔡慧农,等.乳酸钠促进法夫酵母虾青素合成代谢流作用分析[J].微生物学通报,2015,42(4):634-645.
[12] WANG B B,PAN X S,JIA J,et al.Strategy and regulatory mechanisms of glutamate feeding to enhance astaxanthin yield in Xanthophyllomyces dendrorhous[J].Enzyme and Microbical Technology,2019,125:45-52.
[13] MARTÍNEZ-CARDENAS A,CHÁVEZ-CABRERA C,VASQUEZ-BAHENA J M,et al.A common mechanism explains the induction of aerobic fermentation and adaptive antioxidant response in Phaffia rhodozyma[J]. Microbial Cell Factories,2018,17(1):53.
[14] SCHROEDER W A,JOHNSO N E A. Singlet oxygen and peroxyl radicals regulate carotenoid biosynthesis in Phaffia rhodozyma[J]. Journal of Biological Chemistry,1995,270(31):18 374-18 379.
[15] WANG W J,YU L J. Effects of oxygen supply on growth and carotenoids accumulation by Xanthophyllomyces dendrorhous[J]. Zeitschrift Fur Naturforschung C-A Journal of Biosciences,2009,64(11-12):853-858.
[16] ZHANG J,LI Q R,ZHANG M H,et al. Enhancement of carotenoid biosynthesis in Phaffia rhodozyma PR106 under stress conditions[J]. Bioscience Biotechnology and Biochemistry,2019,83(12):2 375-2 385.
[17] 肖安风,倪辉,李利君,等.法夫酵母产虾青素的反复分批及反复分批补料发酵[J].生物工程学报,2011,27(4):598-605.
[18] 倪辉,洪清林,肖安风,等.一株法夫酵母虾青素高产菌株的生产性能[J].生物工程学报,2011,27(7):1 065-1 075.
[19] AN G H,JANG B G,CHO M H.Cultivation of the carotenoid-hyperproducing mutant 2A2N of the red yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma) with molasses[J]. Journal of Bioscience and Bioengineering,2001,92(2):121-125.
[20] NGHIEM N P,MONTANTI J,JOHNSTON D.Production of astaxanthin from corn fiber as a value-added co-product of fuel ethanol fermentation[J]. Applied Biochemistry and Biotechnology,2009,154(1-3):48-58.
[21] PAN X S,WANG B B,GERKEN H G,et al.Proteomic analysis of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous in response to low carbon levels[J]. Bioprocess and Biosystems Engineering,2017,40(7):1 091-1 100.
[22] MIAO L L,CHI S,WU M R,et al. Deregulation of phytoene-β-carotene synthase results in derepression of astaxanthin synthesis at high glucose concentration in Phaffia rhodozyma astaxanthin-overproducing strain MK19[J].BMC Microbiology,2019,19(1):133.
[23] YAMANE Y,HIGASHIDA K,NAKASHIMADA Y,et al.Influence of oxygen and glucose on primary metabolism and astaxanthin production by Phaffia rhodozyma in batch and fed-batch cultures:Kinetic and stoichiometric analysis[J]. Applied and Environmental Microbiology,1997,63(11):4 471-4 478.
[24] CÓRDOVA P,ALCAÍNO J,BRAVO N,et al.Regulation of carotenogenesis in the red yeast Xanthophyllomyces dendrorhous:The role of the transcriptional co-repressor complex Cyc8-Tup1 involved in catabolic repression[J]. Microbial Cell Factories,2016,15(1):193.
[25] 陈晋明,王世平,陈敏.反相高效液相色谱法检测虾青素[J].化学分析计量,2006,15(2):27-29.
[26] WEI L X,YUN Z L,QING S Z,et al.A selective conversion of sulfides to sulfoxides in 3-fluorophenol[J].Synthetic Communications,2004,34(2):231-237.
[27] 朱晓立,裘晖,邓毛程,等.红发夫酵母生产虾青素的培养基优化[J]. 食品与发酵工业,2008,34(2):61-64.
[28] REYNDERS M,RAWLINGS D,HARRISON T L.Demonstration of the Crabtree effect in Phaffia rhodozyma during continuous and fed-batch cultivation[J].Biotechnology Letters,1997,19(6):549-552.
[29] 朱明军,浦跃武,吴海珍,等.不同碳源及其浓度对红发夫酵母培养的影响[J].华南理工大学学报(自然科学版),2002,30(4):77-80.
[1] 夏天航, 魏子淏, 马磊, 奚晓鸿, 宋琳, 徐雅男, 薛长湖. 负载虾青素的油凝胶纳米乳液的构建及体外消化研究[J]. 食品与发酵工业, 2021, 47(9): 1-7.
[2] 张涛, 邓思, 陈艳红, 杜希萍. 虾青素和β-胡萝卜素的抗氧化活性及其协同作用研究[J]. 食品与发酵工业, 2021, 47(9): 8-15.
[3] 孔凡华, 徐佳佳, 郭倩, 白沙沙, 李东, 方从容, 邱楠楠, 崔亚娟. 高效液相色谱法测定虾青素油中虾青素的含量[J]. 食品与发酵工业, 2021, 47(6): 214-220.
[4] 胡凡, 宿玲恰, 吴敬. Thermobifida fusca麦芽三糖淀粉酶的重组表达及其在麦芽三糖制备中的应用[J]. 食品与发酵工业, 2020, 46(5): 23-30.
[5] 孔庆龙, 荆雯, 张晓南, 余汪平, 游燕. 软糖类产品中虾青素的检测及稳定性研究[J]. 食品与发酵工业, 2020, 46(3): 269-275.
[6] 赵明星, 陈阳, 施万胜, 缪恒锋, 黄振兴, 阮文权. 纳米零价铁对糖蜜酒精废水两级厌氧处理的影响[J]. 食品与发酵工业, 2020, 46(21): 70-74.
[7] 丛心缘, 孙伟红, 张辉珍, 冷凯良, 邢丽红, 苗钧魁, 刘小芳. 南极磷虾中不同形态虾青素的分离制备、结构鉴定及含量分析[J]. 食品与发酵工业, 2019, 45(2): 174-178.
[8] 姜燕蓉, 刘锴锴, 齐筱莹, 牛宁, 郝志娜, 胡建恩, 卢航, 赵慧. 虾青素的生物功效及其运载体系研究现状[J]. 食品与发酵工业, 2019, 45(13): 250-256.
[9] 何俊杰,宋光均,邓慧萍,蹇华丽. 补料工艺对乳杆菌CHU-R产虾青素的影响[J]. 食品与发酵工业, 2019, 45(12): 146-151.
[10] 刘春利, 沈宁燕, 倪辉, 等. 乙醇对法夫酵母发酵合成虾青素的影响[J]. 食品与发酵工业, 2018, 44(3): 1-.
[11] 崔静, 丁巍, 余旭亚, 赵永腾, 彭俊. 褪黑素对雨生红球藻虾青素和油脂合成的影响[J]. 食品与发酵工业, 2018, 44(12): 36-42.
[12] 陈阳,赵明星,阮文权. 糖蜜酒精废水的两级UASB处理技术研究[J]. 食品与发酵工业, 2017, 43(6): 27-.
[13] 彭雪娇,黄林华,王华,谈安群,郭莉. 柑橘加工废渣糖蜜糖分的分离提取及含量测定[J]. 食品与发酵工业, 2017, 43(5): 247-.
[14] 丁巍,尚敏敏,余旭亚,赵鹏,李涛,徐军伟. 茴香醚对雨生红球藻(Haematococcus pluvialis LUGU)虾青素积累和脂肪酸合成的影响[J]. 食品与发酵工业, 2017, 43(2): 26-.
[15] 班甲, 陈骏佳, 付尽国, 等 . 糖蜜发酵裂殖壶菌生产二十二碳六烯酸[J]. 食品与发酵工业, 2017, 43(11): 39-43.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn