Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (2): 153-159    DOI: 10.13995/j.cnki.11-1802/ts.024368
  生产与科研应用 本期目录 | 过刊浏览 | 高级检索 |
基于改进蚁狮优化算法的黄酒发酵过程模型的参数辨识
宗原1, 刘登峰1,2*, 刘以安1
1(江南大学 物联网工程学院,江苏 无锡,214122)
2(轻工过程控制教育部重点实验室(江南大学),江苏 无锡,214122)
Model parameter identification of rice wine fermentation process based on an improved ant lion algorithm
ZONG Yuan1, LIU Dengfeng1,2*, LIU Yian1
1(School of Internet of Things,Jiangnan University,Wuxi 214122,China)
2(Key Laboratory of Light Industry Process Control Ministry of Education(Jiangnan University),Wuxi 214122,China)
下载:  HTML   PDF (1934KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对基于Levenberg-Marquardt方法辨识黄酒发酵过程模型参数时易陷入局部最优,收敛速度慢,很难准确获取具有强泛化能力的模型参数的问题,提出了一种具有莱维飞行机制和柯西变异的蚁狮优化算法(ant lion optimization with Levy flight and Cauchy mutation,LCALO),该算法采用基于莱维飞行和柯西变异来解决这类问题。莱维飞行可以提高算法的全局搜索能力,而柯西变异有助于避免陷入局部最优。结果表明,相比于遗传算法、粒子群算法和蚁狮算法,LCALO的收敛速度快,具有全局搜索能力和局部开发能力好的优点。最后将改进算法应用于黄酒发酵模型的参数辨识,仿真结果证明该算法具有较好的参数辨识能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宗原
刘登峰
刘以安
关键词:  蚁狮优化算法  莱维飞行机制  收敛速度  黄酒发酵  参数辨识    
Abstract: For identifying the model parameters of rice wine fermentation process based on the Levenberg-Marquardt method,it is easy to fall into local optimum and slow to converge.This paper proposed an enhanced ant lion optimization algorithm called LCALO (ant lion optimization with Levy flight and Cauchy mutation,LCALO),which employed Levy flight and Cauchy mutation to overcome this problem.Levy flight could improve the global search ability of the algorithm,and the Cauchy mutation with a long tail helped trapped ant lions escape from local optima.The results showed that compared with the genetic algorithm,the particle swarm algorithm and the ant lion algorithm,the LCALO had the advantages of faster convergence speed,better global search ability,and local development ability.Finally,the improved algorithm was applied to the parameter identification of a rice wine fermentation model.Simulation results proved that the algorithm had good identification ability.
Key words:  ant lion optimization algorithm    Levi′s flight mechanism    convergence speed    rice wine fermentation    parameter identification
收稿日期:  2020-05-04      修回日期:  2020-09-03           出版日期:  2021-01-25      发布日期:  2021-02-07      期的出版日期:  2021-01-25
基金资助: 国家自然科学基金青年项目(21706096);江苏省自然科学基金青年项目(BK20160162);江苏省博士后科研项目(1601009A);第62批中国博士后科学基金面上资助(2017M621627)
作者简介:  硕士研究生(刘登峰副教授为通讯作者,E-mail:liudf@jiangnan.edu.cn)
引用本文:    
宗原,刘登峰,刘以安. 基于改进蚁狮优化算法的黄酒发酵过程模型的参数辨识[J]. 食品与发酵工业, 2021, 47(2): 153-159.
ZONG Yuan,LIU Dengfeng,LIU Yian. Model parameter identification of rice wine fermentation process based on an improved ant lion algorithm[J]. Food and Fermentation Industries, 2021, 47(2): 153-159.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.024368  或          http://sf1970.cnif.cn/CN/Y2021/V47/I2/153
[1] 吕旭聪,蒋雅君,胡荣康,等.红曲黄酒传统酿造用曲的特征挥发性风味成分分析[J].中国食品学报,2019,19(5):222-233.
LYU X C,JIANG Y J,HU R K,et al.Studies on the characteristics of volatile flavor components in traditional fermentation starters for Hong Qu glutinous rice wine brewing[J].Journal of Chinese Institute of Food Science and Technology,2019,19(5):222-233.
[2] 吕美.黄酒发酵过程酸败预测及相关参数检测技术研究[D].杭州:浙江大学,2015.
LYU M.Research on rancidity prediction and relevant parameters′ detection technique during fermentation process of rice wine[D].Hangzhou:Zhejiang University,2015.
[3] LIU D,ZHANG H,XU B,et al.Influence of fermentation temperature and source of enzymes on enological characteristics of rice wine[J].Journal of the Institute of Brewing,2014,120(3):231-237.
[4] LIU D,ZHANG H,XIONG W,et al.Effect of temperature on chinese rice wine brewing with high concentration presteamed whole sticky rice[J].Biomed Research International,2014.DOI:10.1155/2014/426929.
[5] LIU D,ZHANG H,XU B,et al.Development of a kinetic model structure for simultaneous saccharification and fermentation in rice wine production[J].Journal of the Institute of Brewing,2015,121(4):589-596.
[6] LIU D,ZHANG H,XU B,et al.Development of kinetic model structures for glutinous rice saccharification by different enzymes[J].Journal of Food Process Engineering,2014,37(3):317-328.
[7] LIU D,XU L,XIONG W,et al.Fermentation process modeling with levenberg-marquardt algorithm and runge-kutta method on ethanol production by Saccharomyces cerevisiae[J].Mathematical Problems in Engineering,2014,2014(7):1 151-1 169.
[8] LIU D,ZHANG H,LIN C,et al.Optimization of rice wine fermentation process based on the simultaneous saccharification and fermentation kinetic model[J]Chinese Journal of Chemical Engineering,2016,24(10):1 406-1 412.
[9] SANTOS COELHO L,MAIDL G,PIEREZAN J,et al.2018 International Symposium on Power Electronics,Electrical Drives,Automation and Motion (SPEEDAM).Ant lion approach based on lozi map for multiobjective transformer design optimization[C].Italy:IEEE,2018:280-285.
[10] VIKHE A S,KALAGE A A.2019 3rd International Conference on Electronics,Communication and Aerospace Technology (ICECA).Power system optimisation using ant lion optimisation technique[C].Shanghai:IEEE,2019:355-361.
[11] YOGARAIAN G,REVATHI T.Improved cluster based data gathering using ant lion optimization in wireless sensor networks[J].Wireless Personal Communications,2018,98(3):2 711-2 731.
[12] MOUASSA S,BOUKTIR T,SALHI A.Ant lion optimizer for solving optimal reactive power dispatch problem in power systems[J].Engineering science and technology,2017,20(3):885-895.
[13] 徐钦帅,何庆,魏康园.改进蚁狮算法的无线传感器网络覆盖优化[J].传感技术学报,2019,32(2):266-275.
XU Q S,HE Q,WEI K Y.Modified ant lion optimizer based coverage optimization of wireless sensor network[J].Chinese Journal of Sensors and Actuators,2019,32(2):266-275.
[14] 张振兴,杨任农,房育寰,等.自适应 Tent 混沌搜索的蚁狮优化算法[J].哈尔滨工业大学学报,2018,50(5):152-159.
ZHANG Z X,YANG R N,FANG Y H,et al.Ant lion optimizatopm algorithm based on self-adaptive Tent chaos search[J].Journal of Harbin Institute of Technology,2018,50(5):152-159.
[15] 于建芳,刘升,王俊杰,等.融合莱维飞行与黄金正弦的蚁狮优化算法[J].计算机应用研究,2019,37(8):2 349-2 353.
YU J F,LIU S,WANG J J,et al.Ant lion optimization algorithm integrating with Lévy flight and golden sine[J].Application Research of Computers,2019,37(8):2 349-2 353.
[16] LIU M,YAO X,LI Y.Hybrid whale optimization algorithm enhanced with Lévy flight and differential evolution for job shop scheduling problems[J].Applied Soft Computing,2020,87:105 954.
[17] YANG J,CAI Y,TANG D,et al.A Novel centralized range-free static node localization algorithm with memetic algorithm and Lévy flight[J].Sensors,2019,19(14):3 242.
[18] LI Y,LI X,LIU J,et al.An improved bat algorithm based on Lévy flights and adjustment factors[J].Symmetry,2019,11(7):925.
[19] SAPRE S,MINI S.Opposition-based moth flame optimization with Cauchy mutation and evolutionary boundary constraint handling for global optimization[J].Soft Computing,2019,23(15):6 023-6 041.
[20] YANG Z,DUAN H,FAN Y,et al.Automatic carrier landing system multilayer parameter design based on Cauchy mutation pigeon-inspired optimization[J].Aerospace Science and Technology,2018,79:518-530.
[21] 王庆喜,郭晓波.[J].计算机应用研究,2016,33(9):2 588-2 591.
WANG Q X,GUO X B.Particle swarm optimization algorithm based on Lvy flight[J].Application Research of Computers,2016,33(9):2 588-2 591.
[22] 于建芳,刘升,韩斐斐,等.基于柯西变异的蚁狮优化算法[J].微电子学与计算机,2019,36(6):45-49;54.
YU J F,LIU S,HAN F F,et al.Ant lion optimization algorithm based on Cauchy variation[J].Microelectronics &Computer,2019,36(6):45-49;54.
[23] MIRJALILI S.The ant lion optimizer[J].Advances in Engineering Software,2015,83:80-98.
[24] REYNOLDS A.Venturing beyond the Lvy flight foraging hypothesis:Reply to comments on"Liberating Lvy walk research from the shackles of optimal foraging"[J].Physics of life reviews,2015,14:115-119.
[25] REYNOLDS A M.Cooperative random Lévy flight searches and the flight patterns of honeybees[J].Physics letters A,2006,354(5-6):384-388.
[26] 高文欣,刘升,肖子雅,等.柯西变异和自适应权重优化的蝴蝶算法[J].计算机工程与应用,2020,56(15):43-50.
GAO W X,LIU S,XIAO Z Y,et al.Butterfly optimization algorithm based on Cauchy variation and adaptive weight[J].Computer Engineering and Applications,2020,56(15):43-50.
[27] CUTAIA A J,REID A J,SPEERS R A.Examination of the relationships between original,real and apparent extracts,and alcohol in pilot plant and commercially produced beers[J].Journal of the Institute of Brewing,2009,115(4):318-327.
[1] 蔡梦萍, 杨丽明, 孙玉东, 缪新兴, 徐大新,. 基于蚁群算法优化的黄酒发酵温度模糊控制系统[J]. 食品与发酵工业, 2013, 39(10): 6-10.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn