Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (17): 119-124    DOI: 10.13995/j.cnki.11-1802/ts.024441
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
大豆发酵液的抗氧化活性
陈彬和1,2, 赵炳天1,2, 孙亚娟1,2, 李云兴1,2*
1(合成与生物胶体教育部重点实验室(江南大学),江苏 无锡,214122)
2(江南大学 化学与材料工程学院,江苏 无锡,214122)
Antioxidant activity of soybean fermentation broth
CHEN Binhe1,2, ZHAO Bingtian1,2, SUN Yajuan1,2, LI Yunxing1,2*
1(Key Laboratory of Synthetic and Biological Colloids, Ministry of Education,Jiangnan University,Wuxi 214122, China)
2(School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China)
下载:  HTML   PDF (1684KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用枯草芽孢杆菌制备大豆发酵液(soybean fermentation broth,S-FB)并研究了其抗氧化活性。通过分析抗氧化活性物含量得到S-FB中总酚和总肽的质量浓度比大豆发酵前提取液(soybean extract,SE)分别提高了187%和229%。抗氧化测试结果显示,1% S-FB对2,2′-联氨双-(3-乙基苯并噻唑啉-6-磺酸)[2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), ABTS]阳离子自由基的清除效果接近10% SE。因此,发酵提高了S-FB中的活性物含量并增强了其抗氧化活性。试验进一步研究了S-FB在人永生化角质形成细胞(HaCaT)内的抗氧化作用。结果表明,S-FB (5%、10%和20%)对活性氧的诱导作用随其体积分数的提高而增强。H2O2+S-FB (5%、10%和20%)提高的活性氧水平均低于H2O2或5% S-FB。因此,当活性氧水平提高,S-FB对活性氧的清除效果增强,诱导作用减弱。5% S-FB处理后,核因子E2相关因子2上调,并且超氧化歧化酶活力在36和48 h分别提高了32.5%和32.1%,对应的过氧化氢酶活力分别提高了19.6%和17.5%,同时该细胞被紫外线B损伤后的存活率是常规HaCaT细胞的1.3倍。因此,S-FB能够通过降低氧化应激反应和激活抗氧化通路来保护HaCaT细胞。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈彬和
赵炳天
孙亚娟
李云兴
关键词:  枯草芽孢杆菌  大豆发酵  抗氧化活性  人永生化角质形成细胞  活性氧  抗氧化通路    
Abstract: Soybean fermentation broth (S-FB) was prepared with Bacillus subtilis and its antioxidant activity was studied. Analysis of the content of active compounds revealed that the mass concentration of total polyphenols and total peptides in S-FB increased by 187% and 229%, respectively, compared with the extract of unfermented soybean (SE). The antioxidant test result suggested that the scavenging effect of 1% φ(S-FB) on ABTS (2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), ABTS) cation radical was close to 10% φ(SE). Thus, fermentation increased the active compounds in S-FB and enhanced its antioxidant activity. Further research was conducted to reveal its antioxidant activity in human immortalized keratinocytes (HaCaT), which showed that φ(S-FB) (5%, 10% and 20%) induced more reactive oxygen species with the increase of its volume fraction. Moreover, H2O2+φ(S-FB) (5%, 10% and 20%) all led to a smaller increase of reactive oxygen species than H2O2 or 5%φ(S-FB) did. Hence, in high reactive oxygen species (ROS)-level cells, the scavenging effect of S-FB on reactive oxygen species increased, followed by its inducting effect declined. After treatment with 5% φ(S-FB), the intracellular nuclear factor erythroid-2-related factor 2 was upregulated, and after 36 and 48 h, the superoxide dismutase activity increased by 32.5% and 32.1%, respectively, while catalase activity increased by 19.6% and 17.5%, respectively. Meanwhile, their cell viability in damage test by ultraviolet radiation B was 1.3 times higher than normal HaCaT cells. Therefore, S-FB could protect HaCaT cells by reducing the oxidative stress and activating the antioxidant pathway.
Key words:  Bacillus subtilis    soybean fermentation    antioxidant activity    human immortalized keratinocytes(HaCaT)    reactive oxygen species    antioxidant pathway
收稿日期:  2020-05-13      修回日期:  2020-06-05           出版日期:  2020-09-15      发布日期:  2020-10-14      期的出版日期:  2020-09-15
基金资助: 国家自然科学基金项目(51903108);中央高校基本科研业务费专项资金项目(JUSRP11927)
作者简介:  硕士研究生(李云兴副教授为通讯作者,E-mail:yunxingli@jiangnan.edu.cn)
引用本文:    
陈彬和,赵炳天,孙亚娟,等. 大豆发酵液的抗氧化活性[J]. 食品与发酵工业, 2020, 46(17): 119-124.
CHEN Binhe,ZHAO Bingtian,SUN Yajuan,et al. Antioxidant activity of soybean fermentation broth[J]. Food and Fermentation Industries, 2020, 46(17): 119-124.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.024441  或          http://sf1970.cnif.cn/CN/Y2020/V46/I17/119
[1] ZHU Y L,ZHANG H S,ZHAO X S,et al.Composition,distribution,and antioxidant activity of phenolic compounds in 18 soybean cultivars[J].Journal of AOAC International,2018,101(2):520-528.
[2] HAN S S,HUR S J,LEE S K.A comparison of antioxidative and anti-inflammatory activities of sword beans and soybeans fermented with Bacillus subtilis[J].Food and Function,2015,6(8):2 736-2 748.
[3] ALI M W,SHAHZAD R,BILAL S,et al.Comparison of antioxidants potential,metabolites,and nutritional profiles of Korean fermented soybean (Cheonggukjang) with Bacillus subtilis KCTC 13241[J].Jo-urnal of Food Science and Technology-Mysore,2018,55(8):2 871-2 880.
[4] YANG J,WU X B,CHEN H L,et al.A value-added approach to improve the nutritional quality of soybean meal byproduct:Enhancing its antioxidant activity through fermentation by Bacillus amyloliquefaciens SWJS22[J].Food Chemistry,2019,272:396-403.
[5] SANJUKTA S,RAI A K,MUHAMMED A,et al.Enhancement of antioxidant properties of two soybean varieties of Sikkim Himalayan region by proteolytic Bacillus subtilis fermentation[J].Journal of Functional Foods,2015,14:650-658.
[6] 李雪,陈雪,吴长庆,等.发酵豆制品的功能性及其机理研究现状[J].食品与发酵工业,2015,41(9):247-252.
[7] 李慧娟,孙云鹏,丁鹏程,等.混合菌固态发酵豆粕制备大豆活性肽[J].食品与发酵工业,2014,40(11):121-126.
[8] MAREK W,ADAM B,KATARZYNA R,et al.Cystine-based MBioF for maintaining the antioxidant-oxidant balance in airway diseases[J].ACS Medicinal Chemistry Letters,2018,19(12):1 280-1 284.
[9] BAYSAL S S,KOC S.Oxidant-antioxidant balance in patients with coronary slow flow[J].Pakistan Journal of Medical Sciences,2019,35(3):786-792.
[10] LEE S I,LEE Y K,KIM S D,et al.Effect of soybean curd residue fermented by monascus pilosus on the high fat diet-induced obese mice[J].Journal of Applied Biological Chemistry,2014,57(1):7-15.
[11] WU Y,CHEN J,YANG C,et al.Antioxidant and hypolipidemic effects of soymilk fermented via Lactococcus acidophilus MF204[J].Food and Function,2017,8(12):4 414-4 420.
[12] SUO H,XIA F,ZHU K,et al.Shuidouchi (fermented soybean) fermented in different vessels attenuates HCl/ethanol-induced gastric mucosal injury[J].Molecules,2015,20(11):19 748-19 763.
[13] 朱仙慕,陈丹,马国萍,等.叶下珠薄层色谱鉴别及福林酚法测定总多酚含量研究[J].中国中医药科技,2018,25(4):514-519.
[14] WEI Y,CHEN P,LING T,et al.Certain (-)-epigallocatechin-3-gallate (EGCG) auto-oxidation products (EAOPs) retain the cytotoxic activities of EGCG[J].Food Chemistry,2016,204:218-226.
[15] KUNDU J,KIM D H,KUNDU J K,et al.Thymoquinone induces heme oxygenase-1 expression in HaCaT cells via Nrf2/ARE activation:Akt and AMPKα as upstream targets[J].Food and Chemical Toxicology,2014,65:18-26.
[16] HSEU Y C,LO H W,KORIVI M,et al.Dermato-protective properties of ergothioneine through induction of Nrf2/ARE-mediated antioxidant genes in UVA-irradiated human keratinocytes[J].Free Radical Biology and Medicine,2015,86:102-117.
[17] QIN Y,PAN X,TANG T T,et al.Anti-proliferative effects of the novel squamosamide derivative (FLZ) on HepG2 human hepatoma cells by regulating the cell cycle-related proteins are associated with decreased Ca2+/ROS levels[J].Chemico-Biological Interactions,2011,193(3):246-253.
[18] AMARAL J H,RIZZI E S,ALVES-LOPES R,et al.Antioxidant and antihypertensive responses to oral nitrite involves activation of the Nrf2 pathway[J].Free Radical Biology and Medicine,2019,141:261-268.
[19] LI H,ZHANG Q,LI W,et al.Role of Nrf2 in the antioxidation and oxidative stress induced developmental toxicity of honokiol in zebrafish[J].Toxicology and Applied Pharmacology,2019,373:48-61.
[20] TIAN Y,LI Y,LI F H,et al.Protective effects of Coreopsis tinctoria flowers phenolic extract against D-galactosamine/lipopolysaccharide-induced acute liver injury by up-regulation of Nrf2,PPARα,and PPARγ[J].Food and Chemical Toxicology,2018,121:404-412.
[21] FEHER P,UJHELYI Z,VARADI J,et al.Efficacy of pre-and post-treatment by topical formulations containing dissolved and suspended silybum marianum against UVB-induced oxidative stress in guinea pig and on HaCaT keratinocytes[J].Molecules,2016,21(10):1 269.
[1] 冯艳钰, 臧延青. 三种小麦麸皮总黄酮的体外抗氧化活性[J]. 食品与发酵工业, 2021, 47(9): 16-24.
[2] 师中迪, 宋雪婷, 余旭亚. 外源褪黑素对盐胁迫下单针藻Monoraphidium sp.QLY-1油脂合成的影响[J]. 食品与发酵工业, 2021, 47(9): 63-69.
[3] 牛娜娜, 沙如意, 杨陈铭, 王珍珍, 茹语婷, 戴静, 韩洪庚, 张黎明, 毛建卫. 预处理工艺对黑蒜功能性成分、抗氧化活性影响及相关性研究[J]. 食品与发酵工业, 2021, 47(8): 67-75.
[4] 王子涵, 向敏, 徐茂, 蒋和体. 响应面优化黑果腺肋花楸汁澄清工艺及其抗氧化活性评价[J]. 食品与发酵工业, 2021, 47(8): 189-196.
[5] 唐璎, 邓展瑞, 黄佳, 杨晓楠. 黄曲霉毒素B1降解菌株的鉴定及降解产物研究[J]. 食品与发酵工业, 2021, 47(7): 64-70.
[6] 顾欣, 高涛, 刘梦雅, 丛之慧, 张诚雅, 肖乐艳, 李迪, 胡景涛. 梁平柚柚皮多糖的提取、结构解析及抗氧化能力研究[J]. 食品与发酵工业, 2021, 47(7): 137-145.
[7] 钱蕾, 刘延峰, 李江华, 刘龙, 堵国成. 适应性进化和改造质粒稳定性促进枯草芽孢杆菌合成N-乙酰神经氨酸[J]. 食品与发酵工业, 2021, 47(5): 1-6.
[8] 张耀, 张露, 刘俊, 涂宗财. 青鱼肉活性肽的制备及其抗肿瘤活性研究[J]. 食品与发酵工业, 2021, 47(5): 35-42.
[9] 匡文玲, 李佳, 韩林, 蒋永波, 邱玲岚, 汪开拓, 王敏. 柠檬果汁主要水溶性成分分析及对高脂诱导L-02肝细胞氧化损伤影响的研究[J]. 食品与发酵工业, 2021, 47(5): 43-47.
[10] 邓永平, 车鑫, 艾瑞波, 刘晓兰, 辛嘉英, 王晓杰. 好食脉孢霉发酵产类胡萝卜素的鉴定、抗氧化性及稳定性研究[J]. 食品与发酵工业, 2021, 47(4): 15-20.
[11] 陆娟, 谢东雪, 贺柳洋, 王月, 郑志艳. 洋甘菊多糖的分离纯化、性质结构及抗氧化活性分析[J]. 食品与发酵工业, 2021, 47(3): 72-78.
[12] 谢三都, 陈惠卿, 庄培荣, 洪家榕, 游利杰. 冲泡型灵芝白茶的制备及其茶汤的抗氧化活性[J]. 食品与发酵工业, 2021, 47(3): 135-142.
[13] 谢思怡, 付余, 邬威. 核糖糖基化修饰对猪肉肌原纤维蛋白功能特性和抗氧化活性的影响[J]. 食品与发酵工业, 2021, 47(20): 90-96.
[14] 张红娟, 种丽颖, 马宁. 葡萄叶酚类化合物及其生物活性研究进展[J]. 食品与发酵工业, 2021, 47(20): 326-332.
[15] 彭松林, 潘成磊, 康梦瑶, 李懿璇, 赵紫悦, 郑仁兵, 尚永彪. 卤烤鸭中类黑精的提取及其抗氧化活性与化学稳定性研究[J]. 食品与发酵工业, 2021, 47(2): 22-29.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn