Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (20): 282-286    DOI: 10.13995/j.cnki.11-1802/ts.024508
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
超声波技术在牛肉嫩化中的应用研究进展
孙海磊1, 罗欣1, 朱立贤1, 毛衍伟1, 张文华2, 张一敏1*
1(山东农业大学 食品科学与工程学院,山东 泰安,271018);
2(国家肉牛牦牛产业技术体系中卫站,宁夏 中卫,755000)
A review: Application of ultrasound on beef tenderization
SUN Hailei1, LUO Xin1, ZHU Lixian1, MAO Yanwei1, ZHANG Wenhua2, ZHANG Yimin1*
1(College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China);
2(Zhongwei Station of National Beef Cattle Industrial Technology System, Zhongwei 755000, China)
下载:  HTML   PDF (626KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 超声波技术作为一种绿色、安全的新兴技术,在牛肉嫩化方面具有良好的应用前景。但是,目前关于超声波技术及该技术与其他技术的复合应用对牛肉嫩度的影响研究还缺乏系统的总结。因此,该文在前人研究的基础上,就超声波技术的作用原理,超声波技术对牛肉嫩度的影响、超声波复合腌制及超声波结合外源酶或钙盐嫩化对牛肉嫩度的影响等最新研究结果进行了综述,旨在为超声波技术在牛肉嫩化方面的合理应用提供理论指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙海磊
罗欣
朱立贤
毛衍伟
张文华
张一敏
关键词:  超声波技术  牛肉  嫩度  腌制  外源酶嫩化  钙盐嫩化    
Abstract: Ultrasound is a green, safe and emerging technology which has a great application potential on beef tenderization. However, the effects of ultrasound and ultrasound combined with other tenderization technologies on beef tenderness was not summarized well. Therefore, this review, based on previous studies, described the mechanism of ultrasound on beef tenderization and also summarized the effects on the beef tenderness of ultrasound, ultrasound assited curing and ultrasound combined with exogenous enzyme tenderization or Ca2+ tenderization. The information gathered in this review will provide support for the application of ultrasound on beef tenderization.
Key words:  ultrasound    beef    tenderness    cure    exogenous enzyme tenderization    Ca2+ tenderization
收稿日期:  2020-05-21      修回日期:  2020-06-08           出版日期:  2020-10-25      发布日期:  2020-11-12      期的出版日期:  2020-10-25
基金资助: 现代农业产业技术体系建设专项资金资助-肉牛(CARS-37);山东省现代农业产业技术体系创新团队建设专项资金(SDAIT-09-09);山东省“双一流”奖补资金(SYL2017XTTD12)
作者简介:  硕士研究生(张一敏副教授为通讯作者,E-mail:ymzhang@sdau.edu.cn)
引用本文:    
孙海磊,罗欣,朱立贤,等. 超声波技术在牛肉嫩化中的应用研究进展[J]. 食品与发酵工业, 2020, 46(20): 282-286.
SUN Hailei,LUO Xin,ZHU Lixian,et al. A review: Application of ultrasound on beef tenderization[J]. Food and Fermentation Industries, 2020, 46(20): 282-286.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.024508  或          http://sf1970.cnif.cn/CN/Y2020/V46/I20/282
[1] 曹兵海,李俊雅,王之盛,等.2019年度肉牛牦牛产业技术发展报告[J].中国畜牧杂志,2020,56(3):173-178.
[2] 周光宏.肉品加工学[M].北京:中国农业出版社,2008.
[3] MILLER M F, CARR M A, RANSEY C B, et al. Consumer thresholds for establishing the value of beef tenderness[J]. Journal of Animal Science, 2001, 79(12): 3 062-3 068.
[4] 曹兵海.2019年肉牛牦牛产业发展趋势与建议[J].饲料工业,2019,40(4):1-7.
[5] ÜNVER A. Applications of ultrasound in food processing[J]. Green Chemical and Technological Letters, 2016, 2(3): 121-126.
[6] ALARCON-ROJO A D, CARRILLO-LOPEZ L M, REYES-VILLAGRANA R, et al. Ultrasound and meat quality: A review[J]. Ultrasonics Sonochemistry, 2019, 55: 369-382.
[7] 钟赛意,姜梅,王善荣,等.超声波与氯化钙结合处理对牛肉品质的影响[J].食品科学,2007(11):142-146.
[8] CHANG H J, XU X L, ZHOU G H, et al. Effects of characteristics changes of collagen on meat physicochemical properties of beef semitendinosus muscle during ultrasonic processing[J]. Food & Bioprocess Technology, 2012, 5(1):285-297.
[9] BERLAN J, MASON T J. Sonochemistry: From research laboratories to industrial plants[J]. Ultrasonics, 1992, 30(4): 203-212.
[10] ROJO A D A, ESMERALDA P G, IVÁN G G, et al. Ultrasound Application to Improve Meat Quality[M]. London:Intechopen, 2018.
[11] PFENNING A. Kirk-othmer encyclopedia of chemical technology[J]. Chemie Ingenieur Technik, 1995, 67(8):1 022-1 022.
[12] CHEMAT F, KHAN M K. Applications of ultrasound in food technology: Processing, preservation and extraction[J]. Ultrasonics Sonochemistry, 2011, 18(4): 813-835.
[13] 周建伟,孟倩,高德,等.超声加工技术对牛肉及其制品品质影响的研究进展[J].现代食品科技, 2020,36(1):296-302.
[14] KOOHMARAIE M, GEESINK G H, Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system[J]. Meat Science, 2006, 74(1): 34-43.
[15] CHANDRAPALA J. Low intensity ultrasound applications on food systems[J]. International Food Research Journal, 2015, 22(3):888-895.
[16] JAYASOORIYA S D, BHANDARI B R, TORLEY P, et al. Effect of high power ultrasound waves on properties of meat: A review[J]. International Journal of Food Properties, 2004, 7(2): 301-319.
[17] BAREKAT S, SOLTANIZADEH N. Effects of ultrasound on microstructure and enzyme penetration in beef Longissimus lumborum muscle[J]. Food and Bioprocess Technology, 2018,11:680-693.
[18] CHANG H J, WANG Q, TANG C H, et al. Effects of ultrasound treatment on connective tissue collagen and meat quality of beef semitendinosus muscle[J]. Journal of Food Quality, 2015, 38(4): 256-267.
[19] STADNIK J, DOLATOWSKI Z J. Influence of sonication on Warner-Bratzler shear force, colour and myoglobin of beef (M. semimembranosus)[J]. European Food Research and Technology, 2011, 233(4): 553.
[20] STADNIK J, DOLATOWSKI Z J, BARANOWSKA H M. Effect of ultrasound treatment on water holding properties and microstructure of beef (M. semimembranosus) during ageing[J]. LWT-Food Science and Technology, 2007, 41(10): 2 151-2 158.
[21] ZHOU G H, XU X L, LIU Y. Preservation technologies for fresh meat-A review[J]. Meat Science, 2010, 86(1): 119-128.
[22] HUFF-LONERGAN E, MITSUHASHI T, BEEKMAN D D, et al. Proteolysis of specific muscle structural proteins by μ-calpain at low pH and temperature is similar to degradation in postmortem bovine muscle[J]. Journal of Animal Science, 1996, 74(5): 993-1 008.
[23] GOT F, CULIOLI J, BERGE P, et al. Effects of high-intensity high-frequency ultrasound on ageing rate, ultrastructure and some physico-chemical properties of beef[J]. Meat Science, 1999, 51(1): 35-42.
[24] JAYASOORIYA S D, TORLEY P J, D’ARCY B R, et al. Effect of high power ultrasound and ageing on the physical properties of bovine Longissimus and Semitendinosus muscles[J]. Meat Science, 2007, 75(4): 628-639.
[25] DOLATOWSKI Z, STASIAK D M, LATOCH A. Effect of ultrasound processing of meat before freezing on its texture after thawing[J]. Electronic Journal of Polish Agricultural Universities, 2000, 3(2): 2.
[26] GONZALEZ-GONZALEZ L, ALARCON-ROJO A D, CARRILLO-LOPEZ L M, et al. Does ultrasound equally improve the quality of beef? An insight into Longissimus lumborum, infraspinatus and cleidooccipitalis[J]. Meat Science, 2020, 160: 107 963.
[27] PEÑA-GONZALEZ E, ALARCON-ROJO A D, GARCIA-GALICIA I, et al. Ultrasound as a potential process to tenderize beef: Sensory and technological parameters[J]. Ultrasonics Sonochemistry, 2019, 53: 134-141.
[28] KANG D, GAO X, GE Q, et al. Effects of ultrasound on the beef structure and water distribution during curing through protein degradation and modification[J]. Ultrasonics Sonochemistry, 2017, 38: 317-325.
[29] FALLAVENA L P, MARCZAK L D F, MERCALI G D. Ultrasound application for quality improvement of beef Biceps femoris physicochemical characteristics[J]. LWT, 2020, 118: 108 817.
[30] WANG A, KANG D, ZHANG W, et al. Changes in calpain activity, protein degradation and microstructure of beef M. semitendinosus by the application of ultrasound[J]. Food Chemistry,2018, 245:724-730.
[31] CARRILLO-LOPEZ L M, HUERTA-JIMENEZ M, GARCIA-GALICIA I A, et al. Bacterial control and structural and physicochemical modification of bovine Longissimus dorsi by ultrasound[J]. Ultrasonics Sonochemistry, 2019, 58: 104 608.
[32] 万云飞.超声与氯化钙联合处理影响牛肉超微结构与嫩度的机理研究[D].杨凌:西北农林科技大学,2019.
[33] BAREKAT S, SOLTANIZADEH N. Improvement of meat tenderness by simultaneous application of high-intensity ultrasonic radiation and papain treatment[J]. Innovative Food Science & Emerging Technologies, 2017, 39: 223-229.
[34] LYNG J G, ALLEN P, MCKENNA B M. The effect on aspects of beef tenderness of pre- and post- rigor exposure to a high intensity ultrasound probe[J]. Journal of the Science of Food and Agriculture, 1998, 78(3):308-314.
[35] POHLMAN F W, DIKEMAN M E, KROPF D H. Effects of high intensity ultrasound treatment, storage time and cooking method on shear, sensory, instrumental color and cooking properties of packaged and unpackaged beef pectoralis muscle[J]. Meat Science, 1997, 46(1):89-100.
[36] BARAT J M, GRAU R, IBÁÑEZ J B, et al. Accelerated processing of dry-cured ham. Part I. Viability of the use of brine thawing/salting operation[J]. Meat Science, 2006, 72(4): 757-765.
[37] 李可,刘俊雅,张艳艳,等.超声波在肉品加工中应用的研究进展[J].食品工业,2018,39(4):280-284.
[38] HAYDOCK D, YEOMANS J M. Acoustic enhancement of diffusion in a porous material[J]. Ultrasonics, 2003, 41(7): 531-538.
[39] 赵永敢,郭明月,刘少阳.超声波处理对牛肉腌制速度的影响[J].肉类工业,2013(4):32-33.
[40] 康大成.超声波辅助腌制对牛肉品质的影响及其机理研究[D].南京:南京农业大学,2017.
[41] 龙锦鹏,唐善虎,李思宁,等.超声波辅助腌制法对牦牛肉腌制速率和品质影响的研究[J].食品科技,2018,43(12):131-137.
[42] 李博文,孔保华,杨振,等.超声波处理辅助腌制对酱牛肉品质影响的研究[J].包装与食品机械,2012,30(1):1-4;40.
[43] 吴巧玲.肉类蛋白酶嫩化剂的研究进展[J].食品工业科技,2001(5):88-90.
[44] 张坤,邹烨,王道营,等.肉品嫩化方法及超声波技术应用于肉品嫩化的研究进展[J].江苏农业科学,2019,47(2):33-37.
[45] KEMP C M, SENSKY P L, BARDSLEY R G, et al. Tenderness—An enzymatic view[J]. Meat Science, 2010, 84(2):248-256.
[46] 王清波,张慜,杨朝晖.响应面法优化超声波辅助木瓜蛋白酶嫩化牛肉[J].山东农业科学,2018,50(5):136-142.
[47] 韩玲,余群力,曹晖,等.一种牛肉快速成熟嫩化的方法:中国, 201210143559.0 [P].2012-08-15.
[48] 陈一萌,唐善虎,李思宁,等.超声波辅助木瓜蛋白酶及发酵处理对牦牛肉的理化和质构特性的影响[J].食品与发酵工业,2019,45(23):183-188.
[49] LANSDELL J L, MILLER M F, WHEELER T L, et al. Postmortem injection of calcium chloride effects on beef quality traits[J]. Journal of Animal Science, 1995, 73(6):1 735-1 740.
[50] 李林强,昝林森,张宝珣.超声辅助氯化钙浸泡处理对牛肉嫩度的影响[J].农业工程学报,2009,25(6):290-295.
[1] 伏慧慧, 马雪莲, 普莉雯, 王念念, 袁湖川, 黄桂芳, 王庆玲. 干腌牛肉加工过程中蛋白质变化对品质的影响[J]. 食品与发酵工业, 2021, 47(9): 223-230.
[2] 李应兰, 李海峰, 贺晓光, 魏亚儒. 基于模糊数学感官评价法研究黄花菜粉添加量对牛肉丸品质的影响[J]. 食品与发酵工业, 2021, 47(5): 112-119.
[3] 朱文政, 徐艳, 刘薇, 王秋玉, 沙文轩, 周晓燕, 杨章平. 烹制时间对狮子头营养品质和挥发性风味物质的影响[J]. 食品与发酵工业, 2021, 47(4): 208-214.
[4] 柳艳霞, 张丽萍, 赵改名, 祝超智, 李苗云, 贝翠平, 参木友, 张继才. 牦牛、黄牛不同部位制作肉干嫩度的差异[J]. 食品与发酵工业, 2021, 47(3): 79-86.
[5] 李艳红, 王稳航. 低温热处理对牦牛肉理化性质及感官特性的影响[J]. 食品与发酵工业, 2021, 47(2): 145-152.
[6] 吴涵, 施文正, 王逸鑫, 杨文仙. 腌制对鱼肉风味物质及理化性质影响研究进展[J]. 食品与发酵工业, 2021, 47(2): 285-291.
[7] 季现秋, 罗欣, 朱立贤, 梁荣蓉, 陈雪, 韩明山, 张文华, 张一敏. 新型牛肉嫩化技术研究进展[J]. 食品与发酵工业, 2021, 47(1): 327-333.
[8] 丁波, 代安娜, 顾利, 王溪桥, 刘红娜. 卤制过程中牦牛肉品质的变化规律[J]. 食品与发酵工业, 2020, 46(9): 171-175.
[9] 李湘銮, 刘巧瑜, 赵文红, 杨娟, 白卫东, 胡松青. 牛肉卤制过程中蛋白质组分的变化及其对品质的影响[J]. 食品与发酵工业, 2020, 46(8): 205-200.
[10] 董迪, 潘嘹, 卢立新. 包装薄膜对生鲜牛肉可见光谱无损检测的干扰及处理方法研究[J]. 食品与发酵工业, 2020, 46(7): 234-238.
[11] 古明辉, 刘永峰, 甘斐, 杨泽莎, 申倩. 铝箔法烤制对牛肉食用和营养品质的影响[J]. 食品与发酵工业, 2020, 46(7): 136-141.
[12] 郑娇, 唐善虎, 李思宁, 谭雪梅, 龚珏, 夏佳军. 有机酸前处理对风干牦牛肉理化性质及挥发性风味物质的影响[J]. 食品与发酵工业, 2020, 46(7): 97-104.
[13] 龚珏, 唐善虎, 李思宁, 郑娇, 谭雪梅. 乳酸菌对发酵牦牛肉灌肠理化性质及挥发性风味物质的影响[J]. 食品与发酵工业, 2020, 46(4): 57-64.
[14] 谭雪梅, 唐善虎, 李思宁, 郑娇, 龚珏. 反复式冻融-风干对风干牦牛肉的理化特性和挥发性成分的影响[J]. 食品与发酵工业, 2020, 46(4): 131-138.
[15] 李薇, 吴良如, 索化夷, 张甫生, 郑炯. 基于高通量测序方法研究腌制麻竹笋发酵过程中细菌群落的动态演替[J]. 食品与发酵工业, 2020, 46(24): 9-15.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn