Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (21): 81-89    DOI: 10.13995/j.cnki.11-1802/ts.024796
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
豌豆种皮水溶性多糖的提取优化、动力学与分子特征
瞿琳, 艾连中, 赖凤羲*, 张汇
(上海理工大学 医疗器械与食品学院,上海食品微生物工程技术研究中心,上海,200093)
The optimization of the extract condition, kinetics, and molecular characteristics of water-soluble polysaccharides from Pisum sativum L. seed pericarp
QU Lin, AI Lianzhong, LAI Phoency*, ZHANG Hui
(Shanghai Engineering Research Center of Food Microbiology,School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology,Shanghai 200093,China)
下载:  HTML   PDF (2505KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 旨在探讨豌豆种皮水溶性多糖的最佳提取工艺条件,解析提取动力学参数并鉴定单糖组成与分子特性,为制备多糖提供理论基础并了解潜在应用性。结果显示,热力提取多糖的最佳提取条件为:液料比25∶1 (mL∶g),提取温度91 ℃,提取时间1.5 h。最大得率为4.4%。在90 ℃下,多糖得率与提取时间的关系可以两阶段的一级扩散动力学模式来描述,前期与后期的提取速率常数k1分別为0.028 8和0.090 7 min-1;也可以一阶段的伪一级(n=0.81)动力学模式来描述,提取速率常数kn=0.023 7 min-1。该多糖的主要单糖组成为阿拉伯糖、木糖和半乳糖醛酸(摩尔比1∶0.55∶0.45),显示含有聚阿拉伯糖、聚木糖和果胶。分子特性方面,其重均分子质量(Mw)=338.9 kDa;多分散系数(PDI)= 3.67;均方根回旋半径(Rg) = 46.8 nm;流体力学半径(Rh)=33.8 nm;Rg / Rh=1.38; 固有黏度[η] = 85.8 mL/g;马克-霍温-樱田关系式([η]=K×Mαw)参数[α]= 0.372,可推知其分子链构象呈柔软无规则卷曲松散的球状。豌豆种皮水溶性多糖适合用来制备高附加值的聚阿拉伯糖和聚木糖。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
瞿琳
艾连中
赖凤羲
张汇
关键词:  豌豆  多糖  动力学  单糖组成  分子性质    
Abstract: The aim of this study was to investigate the optimum extract condition for water-soluble polysaccharides from Pisum sativum L. seed pericarp, elucidate extraction kinetic parameters, and identify the monosaccharide compositions and molecular characteristics of the polysaccharides. Seventeen extraction conditions designed by Box-Behnken experimental design were applied. After response surface statistical analysis, the optimal extraction condition was: liquid-material ratio 25 mL/g; extraction temperature 91℃ for 1.5 h. Under this condition, the maximal yield was 4.4%. The given multiple regression model could describe very well for yield variations in terms of extraction factors. The increase in polysaccharide yield with extraction time at 90℃ could be closely explained by two-stage first-order diffusion kinetics with the early-and late-stage extraction rate constant (k1) of 0.028 8 and 0.090 7 min-1, respectively. Alternatively, it could also be explained by one-stage pseudo-first-order kinetics (n=0.81) with an extraction rate constant kn=0.023 7 min-1. The polysaccharides were mainly composed of arabinose, xylose, and galacturonic acid (molar ratio=1∶0.55∶0.45), implying the presence of arabinans, xylans, and pectins. Moreover, for molecular characteristics, the polysaccharides showed a weight-averaged molecular weight (Mw) = 338.9 kDa; polydispersity index (PDI) = 3.67; mean-square radius of gyration (Rg) = 46.8 nm; hydrodynamic radius (Rh) = 33.8 nm; Rg/Rh = 1.38, intrinsic viscosity [η] = 85.8 mL/g, and the exponent α for Mark-Houwink-Sakurada relationship [η] = K×Mwα) = 0.372. These results suggested that the chain conformation of the polysaccharides adapted flexible random-coil sphere. Conclusively, water-soluble polysaccharides from Pisum sativum L. seed pericarp would be suitable for the production of valorized arabinans and xylans.
Key words:  Pisum sativum    polysaccharide    kinetics    monosaccharide    molecular property
收稿日期:  2020-06-18      修回日期:  2020-07-05           出版日期:  2020-11-15      发布日期:  2020-12-11      期的出版日期:  2020-11-15
基金资助: 上海市科技兴农项目(2019-02-08-00-07-F01152);上海食品微生物工程技术研究中心(19DZ2281100)
作者简介:  硕士研究生(赖凤曦教授为通讯作者,E-mail:plai856@hotmail.com)
引用本文:    
瞿琳,艾连中,赖凤羲,等. 豌豆种皮水溶性多糖的提取优化、动力学与分子特征[J]. 食品与发酵工业, 2020, 46(21): 81-89.
QU Lin,AI Lianzhong,LAI Phoency,et al. The optimization of the extract condition, kinetics, and molecular characteristics of water-soluble polysaccharides from Pisum sativum L. seed pericarp[J]. Food and Fermentation Industries, 2020, 46(21): 81-89.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.024796  或          http://sf1970.cnif.cn/CN/Y2020/V46/I21/81
[1] FAO Statistical Database. Food and Agriculture Organization of the United Nations (FAO):Crop statistics [DB/OL]. (2020-02-06) [2020-06-29]. http://www.fao.org/faostat.
[2] REICHER T R. Quantitative isolation and estimation of cell wall material from dehulled pea (Pisum sativum) flours and concentrates[J]. Cereal Chemistry,1981,58(4):266-270.
[3] 邵娟娟, 马晓军. 豌豆皮膳食纤维吸附性质和抗氧化性质的研究[J]. 食品工业科技,2011,32(8):157-163;163.
[4] MORALES-MEDINA R,DONG D,SCHALOW S,et al. Impact of microfluidization on the microstructure and functional properties of pea hull fibre[J]. Food Hydrocolloids,2020.DOI:10.1016/j.foodhyd.2020.105660.
[5] GUTÖHRLEIN F,DRUSCH S,SCHALOW S. Towards by-product utilization of pea hulls:Isolation and quantification of galacturonic acid[J]. Foods,2018,DOI:10.3390/foods7120203.
[6] GUTÖHRLEIN F,DRUSCH S,SCHALOW S. Extraction of low methoxylated pectin from pea hulls via RSM[J]. Food Hydrocolloids,2020.DOI:10.1016/j.foodhyd.2019.105609.
[7] 曹玉华, 田强,王关斌,等. 豌豆皮酸水解糖化工艺研究[J]. 中国食品添加剂,2016(9):115-119.
[8] WEIGHTMAN R M,RENARD C M G C,THIBAULT J-F. Structure and properties of the polysaccharides from pea hulls. Part I:Chemical extraction and fractionation of the polysaccharides[J]. Carbohydrate Research,1994,24(2):139-148.
[9] LE GOFF A,RENARD C M G C,BONNIN E,et al. Extraction,purification and chemical characterisation of xylogalacturonans from pea hulls[J]. Carbohydrate Polymers,2001,45(4):325-334.
[10] NAGARAJAN J,KRISHNAMURTHY N P,NAGASUNDARA R R,et al. A facile water-induced complexation of lycopene and pectin from pink guava byproduct:Extraction,characterization and kinetic studies[J]. Food Chemistry,2019,296:47-55.
[11] ZHANG W N,ZHANG H L,LU C Q,et al. A new kinetic model of ultrasound-assisted extraction of polysaccharides from Chinese chive[J]. Food Chemistry,2016,212:274-281.
[12] WANG Y,ZHANG X,MA X,et al. Study on the kinetic model,thermodynamic and physicochemical properties of Glycyrrhiza polysaccharide by ultrasonic assisted extraction[J]. Ultrasonics Sonochemistry,2019,51:249-257.
[13] WANG Y,LIU J,LIU X,et al. Kinetic modeling of the ultrasonic-assisted extraction of polysaccharide from Nostoc commune and physicochemical properties analysis[J]. International Journal of Biological Macromolecules,2019,128:421-428.
[14] SUGANYA T,RENGANATHAN S. Optimization and kinetic studies on algal oil extraction from marine macroalgae Ulva lactuca[J]. Bioresource Technology,2012,107:319-326.
[15] DUBOIS M,GILLES K A,HAMILTON J K,et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry,1956,28(3):350-356.
[16] BLUMENKRANTZ N,ASBOE-HANSEN G. New method for quantitative determination of uronic acids[J]. Analytical Biochemistry,1973,54(2):484-489.
[17] 中华人民共和国卫生部.GB 5009.5—2016 食品安全国家标准 食品中蛋白质的测定[S]. 北京:中国标准出版社,2016.
[18] 中华人民共和国卫生部.GB 5009.4—2016 食品安全国家标准 食品中灰分的测定[S]. 北京:中国标准出版社,2016.
[19] 乔小全,任广跃,段续,等. 超微粉碎辅助提取黑豆皮水溶性膳食纤维及其特性研究[J]. 中国粮油学报,2018,33:92-98;104.
[20] ZHANG T T,LU C L,JIANG J G,et al. Bioactivities and extraction optimization of crude polysaccharides from the fruits and leaves of Rubus chingii Hu[J].Carbohydrate Polymers,2015,130:307-315.
[21] CHEN C,YOU L J,ABBASI A M,et al. Optimization for ultrasound extraction of polysaccharides from mulberry fruits with antioxidant and hyperglycemic activity in vitro[J].Carbohydrate Polymers,2015,130:122-132.
[22] ZHENG Q,REN D Y,YANG N N,et al. Optimization for ultrasound-assisted extraction of polysaccharides with chemical composition and antioxidant activity from the Artemisia sphaerocephala Krasch seeds[J]. International Journal of Biological Macromolecules,2016,91:856-866.
[23] YE Z,WANG W,YUAN Q,et al. Box-Behnken design for extraction optimization,characterization and in vitro antioxidant activity of Cicer arietinum L. hull polysaccharides[J]. Carbohydrate Polymers,2016,147:354-364.
[24] TANDE B M,WAGNER N J,MACKAY M E,et al. Viscometric,hydrodynamic,and conformational properties of dendrimers and dendrons[J]. Macromolecules,2001,34(24):8 580-8 585.
[25] PICOUT D R,ROSS-MURPHY S B. On the Mark-Houwink parameters for galactomannans[J]. Carbohydrate Polymers,2007,70(2):145-148.
[26] 赖富饶,吴晖,陆玲,等.二次通用旋转组合设计优化豆皮水溶性多糖的提取工艺[J]. 现代食品科技,2008,24(12):1 259-1 263.
[27] AKHTAR H M S,ABDIN M,HAMED Y S,et al. Physicochemical,functional,structural,thermal characterization and α-amylase inhibition of polysaccharides from chickpea (Cicer arietinum L.) hulls[J]. LWT-Food Science and Technology,2019.DOI.10.1016/j.1wt.2019.108265.
[28] YANG L,ZHANG H,ZHAO Y,et al. Chemical structure,chain conformation and rheological properties of pectic polysaccharides from soy hulls[J]. International Journal of Biological Macromolecules,2020,148:41-48.
[29] LAI F,WEN Q,LI L,et al. Antioxidant activities of water-soluble polysaccharide extracted from mung bean (Vigna radiata L.) hull with ultrasonic assisted treatment[J]. Carbohydrate Polymers,2010,81(2):323-329.
[30] WANG S,ZHAO L,LI Q,et al. Rheological properties and chain conformation of soy hull water-soluble polysaccharide fractions obtained by gradient alcohol precipitation[J]. Food Hydrocolloids,2019,91:34-39.
[1] 史瑛, 冯欣静, 周志磊, 姬中伟, 徐岳正, 毛健. 黄酒多糖对炎症性肠病及便秘作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(9): 275-283.
[2] 刘志芳, 赵前程, 刘志东, 段蕊, 林娜, 张俊杰. 贝类多糖研究进展[J]. 食品与发酵工业, 2021, 47(9): 299-306.
[3] 周雯, 庄蕾, 吴森. 植物多糖在Ⅱ型糖尿病降血糖作用方面的研究进展[J]. 食品与发酵工业, 2021, 47(8): 290-296.
[4] 杨菊, 毛银, 黄晓强, 周胜虎, 邓禹. 计算设计改造Thermobifida fusca 5-羧基-2-戊烯酰-辅酶A还原酶促进己二酸生产[J]. 食品与发酵工业, 2021, 47(7): 1-7.
[5] 朱琳, 郭全友. 底物和环境因子对鱼源腐败希瓦氏菌和假单胞菌生长动力学的影响[J]. 食品与发酵工业, 2021, 47(7): 58-63.
[6] 姚丽文, 周宇芳, 孙继鹏, 王家星, 廖妙飞, 郑斌, 王芮, 邓尚贵, 相兴伟. 厚壳贻贝多糖对葡聚糖硫酸钠诱导的结肠炎改善作用[J]. 食品与发酵工业, 2021, 47(7): 109-115.
[7] 吴清孝, 张海龙, 秦小明, 谌素华. 金花茶花浸提物与消化蛋白酶的相互作用[J]. 食品与发酵工业, 2021, 47(7): 130-136.
[8] 顾欣, 高涛, 刘梦雅, 丛之慧, 张诚雅, 肖乐艳, 李迪, 胡景涛. 梁平柚柚皮多糖的提取、结构解析及抗氧化能力研究[J]. 食品与发酵工业, 2021, 47(7): 137-145.
[9] 刘婷, 周欣, 赵超, 龚小见, 陈华国. 植物多糖对肾损伤干预效果及作用机制研究进展[J]. 食品与发酵工业, 2021, 47(7): 269-277.
[10] 余瞻, 赵福权, 徐成龙, 王珍珍, 张泽鑫, 沙如意, 毛建卫. 红茶菌中细菌纤维素产生菌的筛选、鉴定及其发酵动力学模型构建[J]. 食品与发酵工业, 2021, 47(6): 92-98.
[11] 张晓晓, 柴智, 冯进, 崔莉, 李春阳, 李莹, 黄午阳. 牛蒡多糖的提取及生物活性研究进展[J]. 食品与发酵工业, 2021, 47(6): 280-288.
[12] 李梦钰, 刘会平, 贾琦, 吴亚茹. 天冬多糖理化性质和流变学特性研究[J]. 食品与发酵工业, 2021, 47(5): 48-56.
[13] 吴唯娜, 冯洁茹, 方静宇, 邵平, 孙培龙, 徐靖, 李振皓. 铁皮石斛酶解多糖对姜黄素乳液功能性质的影响[J]. 食品与发酵工业, 2021, 47(5): 63-70.
[14] 杨燕敏, 郑振佳, 高琳, 张砚垒, 张仁堂. 红枣多糖超声波提取、结构表征及抗氧化活性评价[J]. 食品与发酵工业, 2021, 47(5): 120-126.
[15] 邓维良, 柴纬明, 罗麟霜. 利巴韦林抗酪氨酸酶活性及其在贡梨中的保鲜应用[J]. 食品与发酵工业, 2021, 47(5): 162-167.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn