Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (23): 52-59    DOI: 10.13995/j.cnki.11-1802/ts.024799
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
快速工艺与传统工艺下曲霉型豆豉发酵过程中细菌演替的比较
李浩, 梁琦, 杨慧林, 文鹤, 王筱兰*
(江西师范大学 生命科学学院,江西 南昌,330022)
Bacterial succession ofAspergillus-type Douchi during rapid and traditional fermentation
LI Hao, LIANG Qi, YANG Huilin, WEN He, WANG Xiaolan*
(College of Life Science,Jiangxi Normal University,Nanchang 330022,China)
下载:  HTML   PDF (6430KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以快速工艺及传统工艺发酵的曲霉型豆豉为研究对象,采用可培养法及高通量测序技术对2种工艺下的细菌演替展开比较。结果表明:与拌盐发酵的传统工艺相比,未拌盐的快速工艺各时期的发酵温度均高出10 ℃以上,两者pH均稳步下降;2种工艺下可培养微生物的总量均持续减少,且细菌均占据绝对优势,7种优势细菌主要含芽孢杆菌、葡萄球菌及乳杆菌;在门水平上,两者优势门均为厚壁菌门,快速工艺下优势属主要为芽孢杆菌属、赖氨酸芽孢杆菌属、类芽孢杆菌属,而传统工艺下优势属包括葡萄球菌属、乳杆菌属、棒状杆菌属和魏斯氏菌属等,2种工艺特有属的占比均不足5%;2种工艺下菌群结构波动均较大,而快速工艺下菌群的物种丰度更低,且基因功能注释为增殖相关通路的占比更少(P<0.05),说明该工艺下菌群或更多地维持低活性状态,这可能不利于豆豉风味的产生。为此,未来有必要对快速豆豉的发酵工艺进一步地优化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李浩
梁琦
杨慧林
文鹤
王筱兰
关键词:  曲霉型豆豉  高通量测序  可培养法  细菌演替  功能预测    
Abstract: In order to analyze the differences on bacterial succession ofAspergillus-type Douchi during rapid and traditional fermentation,direct culture and high-throughput sequencing methods were applied in sample analysis during fermentation.The results indicated that compared with the traditional technology of salt fermentation,the temperature of the rapid technology without mixing salt was over 10?C higher for each period,and the pH values of both technologies were decreasing steadily.The total amount of cultivable microbes in both processes continued to decline with time,and the bacteria were absolutely dominant,which mainly containedBacillus,Staphylococcus andLactobacillus.The dominant phylum in both processes was Firmicutes,and the dominant genera for rapid fermentation wereBacillus,Lysinibacillus andPaenibacillus,whileStaphylococcus,Lactobacillus,Corynebacterium andWeissella for traditional fermentation,the specific genera of both technologies accounted for less than 5%.The fluctuation of bacterial diversities was significant under both technologies,while the abundance of bacteria was lower for rapid processes,and the proportion of genes annotated as relating to proliferation pathways were also significantly lower (P<0.05).The results indicated that the bacteria may maintained low activity state under rapid process,which was not conducive to the flavor of Douchi.Therefore,it is necessary to further optimize the rapid process in subsequent production.
Key words:  Aspergillus-type Douchi    high-throughput sequencing    culturable method    bacterial succession    function prediction
收稿日期:  2020-06-18      修回日期:  2020-07-17           出版日期:  2020-12-15      发布日期:  2020-12-30      期的出版日期:  2020-12-15
基金资助: 国家自然科学基金项目(31760449)
作者简介:  硕士研究生(王筱兰教授为通讯作者,E-mail:xlwang08@aliyun.com)
引用本文:    
李浩,梁琦,杨慧林,等. 快速工艺与传统工艺下曲霉型豆豉发酵过程中细菌演替的比较[J]. 食品与发酵工业, 2020, 46(23): 52-59.
LI Hao,LIANG Qi,YANG Huilin,et al. Bacterial succession ofAspergillus-type Douchi during rapid and traditional fermentation[J]. Food and Fermentation Industries, 2020, 46(23): 52-59.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.024799  或          http://sf1970.cnif.cn/CN/Y2020/V46/I23/52
[1] 赵德安.豆豉、纳豆和丹贝的简述[J].江苏调味副食品,2008,25(3):1-4.
ZHAO D A.Brief introduction of black bean sauce,natta and tempeh[J].Jiangsu Condiment and Subsidiary Food,2008,25(3):1-4.
[2] FRIEDMAN M,BRANDON D L.Nutritional and health benefits of soy proteins[J].Journal of Agricultural and Food Chemistry,2001,49(3):1 069-1 086.
[3] YUAN J,YANG J,ZHUANG Z,et al.Thrombolytic effects of Douchi fibrinolytic enzyme fromBacillus subtilis LD-8547in vitro andin vivo[J].BMC Biotechnology,2012,12(1):36.
[4] 胡会萍.豆豉后酵中有益微生物及接菌发酵低盐豆豉品质、风味与功能性的研究[D].北京:中国农业大学,2012.
HU H P.Study on beneficial microorganisms during Douchi post-fermentation and the quality,flavor,and functionality of inoculated fermentation low-salt Douchi[D].Beijing:China Agricultural University,2012.
[5] LIU C,GONG F,LI X,et al.Natural populations of lactic acid bacteria in douchi from Yunnan Province,China[J].Journal of Zhejiang University-Science B,2012,13(4):298-306.
[6] 管泳宇,于海,葛庆丰,等.曲霉型豆豉后发酵过程的初步研究[J].食品与生物技术学报,2013,32(2):212-218.
GUAN Y Y,YU H,GE Q F,et al.Analysis of microbe on later fermentation process ofAspergillus-type-Douchi[J].Journal of Food Science and Biotechnology,2013,32(2):212-218.
[7] 胡会萍,刘丹赤,殷丽君,等.豆豉后发酵中优势菌株筛选及其生产性能[J].食品科学,2014,35(17):146-152.
HU H P,LIU D C,YIN L J,et al.Screening and production performance of predominant strains during Douchi post-fermentation[J].Food Science,2014,35(17):146-152.
[8] 李小永.细菌型豆豉后发酵期间菌相分析及产蛋白酶菌种的筛选[D].泰安:山东农业大学,2011.
LI X Y.The analysis of bacterial flora during Douchi post-fermentation and the screening of protease producing bacterial strains from Douchi[D].Taian:Shandong Agricultural University,2011.
[9] CHEN T,XIONG S,JIANG S,et al.Molecular identification of microbial community in Chinese Douchi during post-fermentation process[J].Food Science and Biotechnology,2011,20(6):1 633-1 638.
[10] CHEN T,WANG M,JIANG S,et al.Investigation of the microbial changes during koji-making process of Douchi by culture-dependent techniques and PCR-DGGE[J].International Journal of Food Science and Technology,2011,46(9):1 878-1 883.
[11] 李晓然,李洁,刘晓峰,等.利用高通量测序分析云南豆豉中细菌群落多样性[J].食品与生物技术学报,2014,33(2):137-142.
LI X R,LI J,LIU X F,et al.Analysis of bacterial community diversity in fermented soybean using pyrosequencing[J].Journal of Food Science and Biotechnology,2014,33(2):137-142.
[12] YANG L,YANG H,TU Z,et al.High-throughput sequencing of microbial community diversity and dynamics during Douchi fermentation[J].Plos One,2016,11(12):e168 166.
[13] 石聪,李世瑞,李跑,等.基于高通量测序浏阳豆豉不同发酵阶段微生物多样性分析[J].食品与发酵工业,2018,44(2):27-32.
SHI C,LI S R,LI P,et al.Analysis of microbial diversity in different fermented stages of Liuyang Douchi based on high throughput sequencing[J].Food and Fermentation Industries,2018,44(2):27-32.
[14] HE B,LI H,HU Z,et al.Difference in microbial community and taste compounds betweenMucor-type andAspergillus-type Douchi during koji-making[J].Food Research International,2019,121:136-143.
[15] VAN D E L,JASZCZYSZYN Y,NAQUIN D,et al.The third revolution in sequencing technology[J].Trends in Genetics,2018,34(9):666-681.
[16] LEE H,YOON S,KIM S,et al.Identification of microbial communities,with a focus on foodborne pathogens,during kimchi manufacturing process using culture-independent and-dependent analyses[J].LWT-Food Science and Technology,2017,81:153-159.
[17] 白飞荣,姚粟,田海霞,等.基于高通量测序和可培养方法的勐海发酵普洱茶真菌多样性分析[J].食品与发酵工业,2018,44(12):43-51.
BAI F R,YAO S,TIAN H X,et al.Fungal diversity in fermented Menhai Pu-erh tea using high throughput sequencing and culture isolations[J].Food and Fermentation Industries,2018,44(12):43-51.
[18] GB 5009.44—2016 食品安全国家标准 食品中氯化物的测定[S].北京:中国标准出版社,2016.
GB 5009.44—2016 National food safety standard Determination of chloride in food[S].Beijing:Standards Press of China,2016.
[19] 阮征,魏力,张延杰,等.高通量测序结合传统培养分析常温油沙冰皮月饼的菌群多样性[J].食品与发酵工业,2019,45(6):203-208.
RUAN ZH,WEI L,ZHANG Y J,et al.Analysis of microbial flora diversity of oil bean paste stuffing snow moon cake at room temperature by high-throughput sequencing combined with traditional culture isolation[J].Food and Fermentation Industries,2019,45(6):203-208.
[20] 伍玲,秦礼康.发酵豆制品中高产转氨酶菌株筛选及固态菌剂制备[J].食品科学,2012,33(3):105-109.
WU L,QIN L K.Screening and identification of aminotransferase-producing strain from fermented soybean products andpreparation of its solid starter culture[J].Food Science,2012,33(3):105-109.
[21] EDGAR R C.UPARSE:Highly accurate OTU sequences from microbial amplicon reads[J].Nature Methods,2013,10(10):996-998.
[22] QUAST C,PRUESSE E,YILMAZ P,et al.The SILVA ribosomal RNA gene database project:Improved data processing and web-based tools[J].Nucleic Acids Research,2013,41(1):590-596.
[23] SEGATA N,IZARD J,WALDRON L,et al.Metagenomic biomarker discovery and explanation[J].Genome Biology,2011,12(6):1-18.
[24] BOKULICH N A,MILLS D A.Next-generation approaches to the microbial ecology of food fermentations[J].BMB Reports,2012,45(7):377-389.
[25] 胡会萍,程永强,袁娜,等.传统发酵豆豉含盐量及盐度对豆豉品质的影响[J].中国调味品,2011,36(8):37-41.
HU H P,CHENG Y Q,YUAN N,et al.Chinese traditional fermentation douchi salt content and impact of salt concentration on douchi qualities[J].China Condiment,2011,36(8):37-41.
[26] LEE N Y,KIM Y S,SHIN D H.Characterization of microbes for high temperature fermentation and the effect of high temperature fermentation of soy[J].Food Science and Biotechnology,2003,12(4):390-398.
[27] 朱薇玲,石豪,李金华,等.芽孢杆菌B15胞外蛋白酶和淀粉酶的酶学性质研究[J].中国酿造,2012,31(9):118-121.
ZHU W L,SHI H,LI J H,et al.Enzymatic properties of extracellular protease and amylase fromBacillus sp.B15[J].China Brewing,2012,31(9):118-121.
[28] CHEN T,WANG M,LI S,et al.Molecular identification of microbial community in surface and undersurface Douchi during postfermentation[J].Journal of Food Science,2014,79(4):M653-M658.
[29] CHETTRI R,TAMANG J P.Bacillusspecies isolated from tungrymbai and bekang,naturally fermented soybean foods of India[J].International Journal of Food Microbiology,2015,197:72-76.
[30] 董素琴,武晓丽,王报贵,等.豆豉中主要分离细菌对小鼠生化指标及肠道菌群的影响[J].食品工业科技,2014,35(7):343-347.
DONG S Q,WU X L,WANG B G,et al.The effect of the main bacteria isolated from Douchi on biochemical indexes and the intestinal flora in mice[J].Science and Technology of Food Industry,2014,35(7):343-347.
[31] ZHANG W,LUO Q,ZHU Y,et al.Microbial diversity in two traditional bacterial Douchi from Gansu province in northwest China using Illumina sequencing[J].Plos One,2018,13(3):e194 876.
[32] 王涛,赵东,田时平,等.宜宾浓香型白酒酿造过程中可培养细菌的系统发育多样性[J].微生物学报,2011,51(10):1 351-1 357.
WAN T,ZHAO D,TIAN SH P,et al.Phylogenetic diversity of cultivable bacteria during the brewing process of the Luzhou-flavor liquor in Yibin,Sichuan province,China[J].Acta Microbiologica Sinica,2011,51(10):1 351-1 357.
[33] WU J,TIAN T,LIU Y,et al.The dynamic changes of chemical components and microbiota during the natural fermentation process in Da-Jiang,a Chinese popular traditional fermented condiment[J].Food Research International,2018,112:457-467.
[34] WANG X,ZHANG Y,REN H,et al.Comparison of bacterial diversity profiles and microbial safety assessment of salami,Chinese dry-cured sausage and Chinese smoked-cured sausage by high-throughput sequencing[J].LWT-Food Science and Technology,2018,90:108-115.
[35] 周瑞平,王涛,陈云宗,等.偏高温大曲发酵过程中B.licheniformisB.subtilis动态变化和生产特性[J].食品科学,2013,34(19):237-240.
ZHOU R P,WANG T,CHEN Y Z,et al.Dynamic change and production characteristics ofB.licheniformis andB.subtilis during fermentation of high-temperature Daqu[J].Food Science,2013,34(19):237-240.
[1] 王迪, 王智荣, 陈湑慧, 宋军, 孔祥兵, 陈本开, 阚建全. 不同后发酵温度下曲霉型豆豉的氨基酸态氮生成动力学及品质变化研究[J]. 食品与发酵工业, 2021, 47(9): 91-99.
[2] 邓祥宜, 李继伟, 何立超, 张原源, 黄国威, 鲍晓龙, 邱朝坤. 宣恩火腿发酵过程中表面微生物群落演替规律[J]. 食品与发酵工业, 2021, 47(7): 34-42.
[3] 刘梦琦, 朱媛媛, 倪慧, 王玉荣, 郭壮. 荆州地区霉豆渣真菌多样性研究[J]. 食品与发酵工业, 2021, 47(6): 241-246.
[4] 李娜, 崔梦君, 马佳佳, 雷炎, 郭壮, 张振东. 基于Illumina MiSeq测序和传统可培养方法的洪湖鲊广椒乳酸菌多样性研究[J]. 食品与发酵工业, 2021, 47(4): 110-115.
[5] 尚雪娇, 方三胜, 朱媛媛, 赵慧君, 郭壮. 霉豆渣细菌多样性解析及基因功能预测[J]. 食品与发酵工业, 2021, 47(3): 36-42.
[6] 黄瑜, 杨帆, 李江华, 杨玉波, 堵国成, 王莉, 刘延峰. 小麦原料微生物组成对高温大曲风味的影响[J]. 食品与发酵工业, 2021, 47(20): 22-29.
[7] 任宇婷, 陈春利, 朱永亮, 郭昊翔, 陈忠军, 孙子羽, 满都拉. 广西扶绥酸粥中微生物组成及营养成分分析[J]. 食品与发酵工业, 2021, 47(20): 37-43.
[8] 魏建敏, 杨华连, 陈莉, 卢红梅, 石庆叠, 张祥瑞, 涂青. 基于高通量测序分析果桑茶对2型糖尿病模型小鼠肠道菌群的影响[J]. 食品与发酵工业, 2021, 47(20): 75-82.
[9] 王子媛, 宋庭羽, 邵毅君, 凌霞, 侯强川, 郭壮. 慈利和古丈地区酸肉细菌多样性差异研究及其功能预测[J]. 食品与发酵工业, 2021, 47(20): 126-132.
[10] 牟娟, 刘芳, 王兴洁, 刘爱平, 敖晓琳, 李建龙, 刘书亮. 胀气变质食醋理化指标及细菌多样性分析[J]. 食品与发酵工业, 2021, 47(20): 278-284.
[11] 王俊奇, 黄卫红, 李双彤, 袁建军, 陈洪彬, 马应伦, 张秋芳. 永春老醋不同生产阶段细菌和真菌多样性动态变化特征分析[J]. 食品与发酵工业, 2021, 47(2): 38-44.
[12] 张倩, 韩保林, 李子健, 谢军, 余东, 邹永芳, 郭辉祥, 文静, 张玲玲, 罗惠波, 黄丹. 浓香型白酒包包曲微生物种群多样性及形成机制[J]. 食品与发酵工业, 2021, 47(18): 99-106.
[13] 杨柳, 高良锋, 沈明浩, 姜斌, 任大勇. 朝鲜族辣白菜在自然发酵过程中菌群结构与主要呈味物质的相关性[J]. 食品与发酵工业, 2021, 47(17): 61-68.
[14] 周天慈, 何宏魁, 周庆伍, 曹润洁, 马叶胜, 杜海, 徐岩. 基于高通量扩增子测序技术解析中高温大曲微生物来源[J]. 食品与发酵工业, 2021, 47(16): 66-71.
[15] 文鹤, 查双龙, 胡祥飞, 张盼文, 杨慧林, 王筱兰. 曲霉型豆豉快速发酵工艺生产过程中的挥发性成分对比分析[J]. 食品与发酵工业, 2021, 47(16): 239-246.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn