Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (5): 288-295    DOI: 10.13995/j.cnki.11-1802/ts.024853
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
物理法改善鱼肉蛋白功能特性研究概述
姜昕1, 王锡昌1, 潘凤涛2, 季中春2, 施文正1*
1(上海海洋大学 食品学院, 上海, 201306)
2(盐城市怡美食品有限公司, 江苏 盐城, 224300)
Research progress of physical methods on modifying functional properties of fish meat protein
JIANG Xin1, WANG Xichang1, PAN Fengtao2, JI Zhongchun2, SHI Wenzheng1*
1(College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China)
2(Yancheng Yimei Food Co.Ltd., Yancheng 224300, China)
下载:  HTML   PDF (1986KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 鱼肉是优质蛋白的重要来源。为了提高鱼肉蛋白的利用率, 可通过物理方法改善蛋白质的功能特性, 提升鱼肉蛋白的应用价值和应用前景。该文综述了几种改善鱼肉蛋白功能特性的物理新方法, 阐述其对鱼肉蛋白功能特性的影响, 并对物理法在鱼肉蛋白改性上深入研究进行展望, 以期为鱼肉蛋白改性加工提供指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜昕
王锡昌
潘凤涛
季中春
施文正
关键词:  鱼肉蛋白  物理改性  溶解性  凝胶特性  乳化特性  起泡特性    
Abstract: Fish meat is a major resource of high-quality protein. To improve the utilization rate of fish meat protein, the functional properties of protein can be improved by physical modification methods so as to enhance its application value and the prospect. This article reviewed several new physical methods of modifying the functional properties of fish meat protein, and their effects on the functional properties in detail. Additionally, further researches on the modification of fish meat protein by physical methods have been proposed to modify fish meat protein.
Key words:  fish meat protein    physical modification    solubility    gelling properties    emulsifying properties    foaming properties
收稿日期:  2020-07-01      修回日期:  2020-09-14                发布日期:  2021-03-31      期的出版日期:  2021-03-15
基金资助: 国家重点研发计划项目(2019YFD0902003);国家自然科学基金面上项目(31471685);射阳县科技成果转化项目(SY2019002)
作者简介:  硕士研究生(施文正教授为通讯作者, E-mail:wzshi@shou.edu.cn)
引用本文:    
姜昕,王锡昌,潘凤涛,等. 物理法改善鱼肉蛋白功能特性研究概述[J]. 食品与发酵工业, 2021, 47(5): 288-295.
JIANG Xin,WANG Xichang,PAN Fengtao,et al. Research progress of physical methods on modifying functional properties of fish meat protein[J]. Food and Fermentation Industries, 2021, 47(5): 288-295.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.024853  或          http://sf1970.cnif.cn/CN/Y2021/V47/I5/288
[1] 郭超凡, 王云阳.蛋白质物理改性的研究进展[J].食品安全质量检测学报, 2017, 8(2):428-433.
GUO F C, WANG Y Y.Research progress on physical modification methods of protein[J].Journal of Food Safety and Quality, 2017, 8(2):428-433.
[2] 张晶晶, 郑惠娜, 章超桦, 等.水产蛋白的提取及其改性研究进展[J].安徽农业科学, 2014, 42(11):3 401-3 403;3 422.
ZHANG J J, ZHENG H N, ZHANG C H, et al.Research progress of extraction and modification of aquatic protein[J].Journal of Anhui Agricultural Sciences, 2014, 42(11):3 401-3 403;3 422.
[3] MIRMOGHTADAIE L, ALIABADI S S, HOSSEINI S M.Recent approaches in physical modification of protein functionality[J].Food Chemistry, 2016, 199:619-627.
[4] ROSELLI L, CICIA G, CAVALLO C, et al.Consumers' willingness to buy innovative traditional food products:the case of extra-virgin olive oil extracted by ultrasound[J].Food Research International, 2018, 108:482-490.
[5] O'SULLIVAN J J, PARK M, BEEVERS J, et al.Applications of ultrasound for the functional modification of proteins and nanoemulsion formation:A review[J].Food Hydrocolloids, 2017, 71:299-310.
[6] MA W C, WANG J M, XU X B, et al.Ultrasound treatment improved the physicochemical characteristics of cod protein and enhanced the stability of oil-in-water emulsion[J].Food Research International, 2019, 121:247-256.
[7] LIU R, LIU Q, XIONG S B, et al.Effects of high intensity unltrasound on structural and physicochemical properties of myosin from silver carp[J].Ultrasonics Sonochemistry, 2016, 37:150-157.
[8] LIU H T, ZHANG H, LIU Q, et al.Solubilization and stable dispersion of myofibrillar proteins in water through the destruction and inhibition of the assembly of filaments using high-intensity ultrasound[J].Ultrasonics Sonochemistry, 2020, 67:105160.
[9] 胡爱军, 卢秀丽, 郑捷, 等.不同频率超声对鲢鱼肌原纤维蛋白结构的影响[J].现代食品科技, 2014, 30(3):23-27.
HU A J, LU X L, ZHENG J, et al.Effect of different frequency ultrasonic treatments on the structures of silver carp myofibrillar protein[J].Modern Food Science and Technology, 2014, 30(3):23-27.
[10] SUN J, MU Y Y, JING H, et al.Effects of single-and dual-frequency ultrasound on the functionality of egg white protein[J].Journal of Food Engineering, 2020, 277:109 902.
[11] CHENG Y, DONKOR P O, REN X F, et al.Effect of ultrasound pretreatment with mono-frequency and simultaneous dual frequency on the mechanical properties and microstructure of whey protein emulsion gels[J].Food Hydrocolloids, 2019, 89:434-442.
[12] GHARIBZAHEDI S M T, SMITH B.The functional modification of legume proteins by ultrasonication:A review[J].Trends in Food Science and Technology, 2020, 98:107-116.
[13] CHEN X, XU X L, LIU D M, et al.Rheological behavior, conformational changes and interactions of water-soluble myofibrillar protein during heating[J].Food Hydrocolloids, 2018, 77:524-533.
[14] 王盼盼. 食品中蛋白质的功能特性综述[J].肉类研究, 2010(5):62-71.
WANG P P.Functionality of food protein[J].Meat Research, 2010(5):62-71.
[15] ARREDONDO-PARADA I, TORRES-ARREOLA W, SUAREZ-JIMENEZ G M, et al.Effect of ultrasound on physicochemical and foaming properties of a protein concentrate from giant squid (Dosidicus gigas) mantle[J].LWT-Food Science and Technology, 2020, 121:108 954.
[16] REN X E, LI C, YANG F, et al.Comparison of hydrodynamic and ultrasonic cavitation effects on soy protein isolate functionality[J].Journal of Food Engineering, 2020, 265:109 697.
[17] 李长乐, 武雅琴, 王莉莎, 等.超声波及超声波结合酸处理优化鲣鱼肌原纤维蛋白功能特性[J].食品与发酵工业, 2019, 45(3):119-123.
LI C L, WU Y Q, WANG L S, et al.Study on the optimization of gelling properties of skipjack myofibrillar protein by ultrasonic and ultrasonic combined with acid treatment[J].Food and Fermentation Industries, 2019, 45(3):119-123.
[18] 李长乐, 王琛, 郭全友, 等.超声波、超高压处理对鲣鱼肌原纤维蛋白功能性质的影响[J].食品与发酵工业, 2018, 44(7):96-101.
LI C L, WANG C, GUO Q Y, et al.Effect of ultrasonic and ultrahigh pressure on the functional properties of skipjack myofibrillar protein[J].Food and Fermentation Industries, 2018, 44(7):96-101.
[19] WEN Q H, TU Z C, ZHANG L, et al.Effect of high intensity ultrasound on the gel and structural properties of Ctenopharyngodon idellus myofibrillar protein[J].Journal of Food Biochemistry, 2017, 41(1).
[20] LI Z Y, WANG J Y, ZHENG B D, et al.Impact of combined ultrasound-microwave treatment on structural and functional properties of golden threadfin bream (Nemipterus virgatus) myofibrillar proteins and hydrolysates[J].Ultrasonics Sonochemistry, 2020, 65:105 063.
[21] 尹艺霖, 刘学军.不同超声功率处理对鲢鱼肌原纤维蛋白理化特性及凝胶品质的影响[J].肉类研究, 2019, 33(3):14-19.
YIN Y L, LIU X J.Effects of ultrasonic power on physicochemical properties and gel quality of myobrillar protein from silver carp[J].Meat Research, 2019, 33(3):14-19.
[22] 谢亚如, 刘庆, 熊善柏, 等.高强度超声作用下鲢鱼肌球蛋白的结构及流变学特性变化[J].食品科学, 2019, 40(5):77-84.
XIE Y R, LIU Q, XIONG S B, et al.Effect of high intensity ultrasound on structural and rheological properties of myosin from silver carp[J].Food Science, 2019, 40(5):77-84.
[23] AN Y Q, LIU Q, XIE Y R, et al.Aggregation and conformational changes of silver carp myosin as affected by the ultrasound-calcium combination system[J].Journal of the Science of Food and Agriculture, 2018, 98(14):5 335-5 343.
[24] ZHOU A, LIN L, LIANG Y, et al.Physicochemical properties of natural actomyosin from threadfin bream (Nemipterus spp.) induced by high hydrostatic pressure[J].Food Chemistry, 2014, 156:402-407.
[25] 曹莹莹, 张亮, 王鹏, 等.超高压结合热处理对肌球蛋白凝胶特性及蛋白二级结构的影响[J].肉类研究, 2013, 27(1):1-7.
CAO Y Y, ZHANG L, WANG P, et al.Combined effect of ultra high pressure and heating on gel properties and secondary structure of myosin[J].Meat Research, 2013, 27(1):1-7.
[26] MEDINA-MEZA L G, BARNABA C, BARBOSA-CANOVAS G V.Effects of high pressure processing on lipid oxidation:A review[J].Innovative Food Science and Emerging Technologies, 2014, 22:1-10.
[27] YU D W, WU L Y, REGENSTEIN J M, et al.Recent advances in quality retention of non-frozen fish and fishery products:a review[J].Critical Reviews in Food Science and Nutrition, 2020, 60(10):1 747-1 759.
[28] WANG J, LI Z, ZHENG B, et al.Effect of ultra-high pressure on the structure and gelling properties of low salt golden threadfin bream (Nemipterus virgatus) myosin[J].LWT-Food Science and Technology, 2019, 100:381-390.
[29] GUO Z B, LI Z Y, WANG J Y, et al.Gelation properties and thermal gelling mechanism of golden threadfin bream myosin containing CaCl2 induced by high pressure processing[J].Food Hydrocolloids, 2019, 95:43-52.
[30] VILLAMONTE G, POTTIER L, DE LAMBALLERIE M.Influence of high-pressure processing on the physicochemical and the emulsifying properties of sarcoplasmic proteins from hake (Merluccius merluccius)[J].European Food Research and Technology, 2016, 242(5):667-675.
[31] 冯建慧, 曹爱玲, 陈小强, 等.微波对食品蛋白凝胶性和结构影响研究进展[J].食品工业科技, 2017, 38(18):317-322.
FENG J H, CAO A L, CHEN X Q, et al.Research progress of effect of microwave heating on gelation properties and structure of food protein[J].Science and Technology of Food Industry, 2017, 38(18):317-322.
[32] CAO H W, JIAO X D, FAN D M, et al.Microwave irradiation promotes aggregation behavior of myosin through conformation changes[J].Food Hydrocolloids, 2019, 96:11-19.
[33] CAI L Y, FENG J H, CAO A L, et al.Denaturation kinetics and aggregation mechanism of the sarcoplasmic and myofibril proteins from grass carp during microwave processing[J].Food and Bioprocess Technology, 2018, 11(2):417-426.
[34] ZHENG Y M, LI Z Y, ZHANG C, et al.Effects of microwave-vacuum pre-treatment with different power levels on the structural and emulsifying properties of lotus seed protein isolates[J].Food Chemistry, 2020, 311:125 932.
[35] LIU X Y, FENG D D, JI L, et al.Effects of microwave heating on the gelation properties of heat-induced Alaska pollock (Theragra chalcogramma) surimi[J].Food Science and Technology International, 2018, 24(6):497-506.
[36] 赵维高, 刘文营, 黄丽燕, 等.食品加工中蛋白质起泡性的研究[J].农产品加工(学刊), 2012(11):69-72.
ZHAO W G, LIU W Y, HUANG L Y, et al.Review of the research on protein foaming ability in food processing[J].Academic Periodical of Farm Products Processing, 2012(11):69-72.
[37] 张晗, 高星, 宣仕芬, 等.电子束辐照对鲈鱼肉肌原纤维蛋白生化特性及其构象的影响[J].食品科学, 2019, 40(13):81-86.
ZHANG H, GAO X, XUAN S F, et al.Effect of electron beam irradiation on biochemical properties and structure of myofibrillar protein from Lateolabrax japonicus meat[J].Food Science, 2019, 40(13):81-86.
[38] LIN X P, YANG W G, XU D L, et al.Improving gel properties of hairtail surimi by electron irradiation[J].Radiation Physics and Chemistry, 2015, 110:1-5.
[39] SHI Y, LI R Y, TU Z C, et al.Effect of gamma-irradiation on the physicochemical properties and structure of fish myofibrillar proteins[J].Radiation Physics and Chemistry, 2015, 109:70-72.
[40] LV M C, MEI K L, ZHANG H, et al.Effects of electron beam irradiation on the biochemical properties and structure of myofibrillar protein from Tegillarca granosa meat[J].Food Chemistry, 2018, 254:64-69.
[41] ZHANG H F, WANG W, WANG H Y, et al.Effect of e-beam irradiation and microwave heating on the fatty acid composition and volatile compound profile of grass carp surimi[J].Radiation Physics and Chemistry, 2017, 130:436-441.
[42] LI C L, HE L C, MA S M, et al.Effect of irradiation modification on conformation and gelation properties of pork myofibrillar and sarcoplasmic protein[J].Food Hydrocolloids, 2018, 84:181-192.
[43] 吕梁玉, 罗华彬, 吕鸣春, 等.电子束辐照对梅鱼鱼糜化学作用力、流变及其凝胶特性的影响[J].食品科学, 2018, 39(19):7-12.
LV L Y, LUO H B, LV M C, et al.Effect of electron beam irradiation on chemical interactions, rheological and gel properties of Collichthys lucidus surimi[J].Food Science, 2018, 39(19):7-12.
[44] LIN X P, YANG W G, XU D L, et al.Effect of electron irradiation and heat on the structure of hairtail surimi[J].Radiation Physics and Chemistry, 2015, 114:50-54.
[45] ZHANG X X, WANG L, CHEN Z X, et al.Effect of electron beam irradiation on the structural characteristics and functional properties of rice proteins[J].Rsc Advances, 2019, 9(24):13 550-13 560.
[46] HASSAN A B, MAHMOUD N S, ELMAMOUN K, et al.Effects of gamma irradiation on the protein characteristics and functional properties of sesame (Sesamum indicum L.) seeds[J].Radiation Physics and Chemistry, 2018, 144:85-91.
[47] KWANG-HWAN K, SAM PIN L, KEY W.Effects of electron beam irradiation on functional and other associated properties of pork myofibrillar salt-soluble proteins[J].Journal of Food Science and Nutrition, 2006, 11(1):73-77.
[48] ROMANI V P, OLSEN B, COLLARES M P, et al.Improvement of fish protein films properties for food packaging through glow discharge plasma application[J].Food Hydrocolloids, 2019, 87:970-976.
[49] 季慧, 于娇娇, 张金, 等.介质阻挡低温等离子处理对花生蛋白持水性及溶解性的影响[J].农业工程学报, 2019, 35(4):299-304.
JI H, YU J J, ZHANG J, et al.Effects of dielectric barrier discharge cold plasma treatment on solubility and water holding capacity of peanut protein[J].Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(4):299-304.
[50] 杨新文, 牛文俊, 成军虎, 等.低温等离子技术及其对食品品质与微生物的影响[J].食品与机械, 2019, 35(9):199-203;215.
YANG X W, NIU W J, CHENG J H, et al.Cold plasma technology and its effect on the food quality and microorganism[J].Food and Machinery, 2019, 35(9):199-203;215.
[51] 燕杰. 低温等离子体处理技术及装置[D].北京:中国石油大学, 2011.
YAN J.Technology and device of low-temperature plasma[D].Beijing:China University of Petroleum, 2011.
[52] MIAO W H, NYAISABA B M, KODDY J K, et al.Effect of cold atmospheric plasma on the physicochemical and functional properties of myofibrillar protein from Alaska pollock (Theragra chalcogramma)[J].International Journal of Food Science and Technology, 2020, 55(2):517-525.
[53] EKEZIE F G C, CHENG J H, SUN D W.Effects of atmospheric pressure plasma jet on the conformation and physicochemical properties of myofibrillar proteins from king prawn (Litopenaeus vannamei)[J].Food Chemistry, 2019, 276:147-156.
[54] PEREZ-ANDRES J M, DE ALBA M, HARRISON S M, et al.Effects of cold atmospheric plasma on mackerel lipid and protein oxidation during storage[J].LWT-Food Science and Technology, 2020, 118:108 697.
[55] DACHMANN E, NOBIS V, KULOZIK U, et al.Surface and foaming properties of potato proteins:Impact of protein concentration, pH value and ionic strength[J].Food Hydrocolloids, 2020, 107:105 981.
[56] GE G, HAN Y R, ZHENG J B, et al.Physicochemical characteristics and gel-forming properties of myofibrillar protein in an oxidative system affected by partial substitution of NaCl with KCl, MgCl2 or CaCl2[J].Food Chemistry, 2020, 309:114 537.
[57] 朱一丹, 谢国锦, 高岭, 等.不同pH和离子强度条件下青鱼(Mylopharyngodon piceus)肌浆蛋白IgG/IgE结合能力的变化[J].食品与发酵工业, 2020, 46(14):34-39.
ZHU Y D, XIE G J, GAO L, et al.Effect of different pH and ion strength on IgG/IgE binding capacity of sarcoplasmic protein of black carp (Mylopharyngodon piceus)[J].Food and Fermentation Industries, 2020, 46(14):34-39.
[58] ZHANG L T, LI Q, HONG H, et al.Prevention of protein oxidation and enhancement of gel properties of silver carp (Hypophthalmichthys molitrix) surimi by addition of protein hydrolysates derived from surimi processing by-products[J].Food Chemistry, 2020, 316:126 343.
[59] 周国艳, 郭堂鹏.鲢鱼鱼糜在储藏过程中新鲜度和盐溶性蛋白质变化研究[J].食品科技, 2008, 29(8):240-243.
ZHOU G Y, GUO T P.Study on the change of silver carp surimi freshness and salt-soluble protein during the storage[J].Food Science and Technology, 2008, 29(8):240-243.
[60] ZHU Z W, LANIER T C, FARKAS B E, et al.Transglutaminase and high pressure effects on heat-induced gelation of Alaska pollock (Theragra chalcogramma) surimi[J].Journal of Food Engineering, 2014, 131:154-160.
[61] 周向军, 董瑞红, 高义霞.pH偏移结合温和热处理对蚕豆分离蛋白结构和功能的影响[J].食品与发酵工业, 2019, 45(1):100-108.
ZHOU X J, DONG R H, GAO Y X.Effects of pH-shifting combined with mild heating processes on structural and functional properties of broad bean protein isolates[J].Food and Fermentation Industries, 2019, 45(1):100-108.
[62] GAO H, MA L, LI T Q, et al.Impact of ultrasonic power on the structure and emulsifying properties of whey protein isolate under various pH conditions[J].Process Biochemistry, 2019, 81:113-122.
[63] BREWER M S.Irradiation effects on meat flavor:A review[J].Meat Science, 2009, 81(1):1-14.
[1] 李丹丹, 谢盛莉, 马良, 侯勇, 付余, 张宇昊. 水溶性蚕蛹蛋白功能特性探究[J]. 食品与发酵工业, 2021, 47(4): 7-14.
[2] 陆益钡, 吕春霞, 廖慧琦, 胡远辉, 雷叶斯, 曹少谦, 杨华. NaCl对添加丝氨酸蛋白酶的肌原纤维蛋白凝胶特性的影响[J]. 食品与发酵工业, 2021, 47(2): 78-86.
[3] 黎重阳, 谢盛莉, 马良, 侯勇, 付余, 张宇昊. 典型化学加工条件对不溶性蚕蛹蛋白凝胶特性影响[J]. 食品与发酵工业, 2021, 47(2): 121-129.
[4] 王静宇, 胡新, 刘晓艳, 姬红, 杨京霞, 刘小丽, 陈辰, 屈长青. 肌原纤维蛋白热诱导凝胶特性及化学作用力研究进展[J]. 食品与发酵工业, 2020, 46(8): 300-306.
[5] 李莎莎, 计红芳, 张令文, 韩西平, 陈复生, 马汉军, 吴天慈, 王益彪. 添加面筋蛋白对鸡肉凝胶品质特性的改善[J]. 食品与发酵工业, 2020, 46(7): 142-147.
[6] 郭娜, 宋苗苗, 徐忠东, 朱桂兰, 何云昆, 余振宇, 马滢. 高酰基结冷胶对乳清分离蛋白热诱导凝胶特性的影响[J]. 食品与发酵工业, 2020, 46(3): 72-77.
[7] 廖振胜, 张娜, 杨宇成, 黄雅燕, 张学勤, 叶静, 肖美添. 多糖溶解性改善方法研究进展[J]. 食品与发酵工业, 2020, 46(24): 292-299.
[8] 李钊, 李宁宁, 刘玉, 赵圣明, 康壮丽, 朱明明, 计红芳, 何鸿举, 马汉军. 超高压对肌原纤维蛋白结构及其凝胶特性影响的研究进展[J]. 食品与发酵工业, 2020, 46(21): 304-309.
[9] 廖慧琦, 吕春霞, 陆益钡, 胡远辉, 雷叶斯, 张慧恩, 杨华. 食盐添加量对养殖大黄鱼鱼糜凝胶特性的影响[J]. 食品与发酵工业, 2020, 46(20): 67-71.
[10] 孙克奎, 姜雪娟, 潘雅燕, 纵心想, 熊国远, 周希. 超微茶粉和糯米粉对猪肉肌原纤维蛋白乳化特性的影响[J]. 食品与发酵工业, 2020, 46(2): 188-193.
[11] 白英, 杨月娇, 谢瑞鹏. 果胶-乳清蛋白混合比例和pH值对体系流变学特性的影响[J]. 食品与发酵工业, 2020, 46(18): 61-66.
[12] 汤嘉慧, 郭全友, 邹咪, 谢晨, 熊泽语, 包海蓉. κ-卡拉胶/K+凝胶体系对鱼糜凝胶特性和流变的影响[J]. 食品与发酵工业, 2020, 46(16): 86-92.
[13] 黎英, 周荣池, 刘夏蕾, 梁月霜, 罗正成, 汪美珍. 百香果皮果胶的理化及凝胶特性[J]. 食品与发酵工业, 2020, 46(12): 140-146.
[14] 张建华, 夏杨毅. 氧化条件下HL-低钠盐对鹅肉肌原纤维蛋白凝胶特性的影响[J]. 食品与发酵工业, 2020, 46(10): 166-172.
[15] 周洋莹, 郑红莉, 杨文钰, 张清. 大豆分离蛋白-大豆低聚糖糖基化产物溶解性和乳化性分析[J]. 食品与发酵工业, 2020, 46(1): 118-124.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn