Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (5): 71-78    DOI: 10.13995/j.cnki.11-1802/ts.024862
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
金针菇无细胞滤液合成纳米银颗粒
朱雨婕, 代安然, 李佳铭, 吴凡, 杨崇婧, 陈磊*
(江南大学 生物工程学院 糖化学与生物技术重点实验室, 江苏 无锡, 214122)
Synthesis of silver nanoparticles using cell-free filtrate of Flammulina velutipes
ZHU Yujie, DAI Anran, LI Jiaming, WU Fan, YANG Chongjing, CHEN Lei*
(Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China)
下载:  HTML   PDF (5358KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探索金针菇菌丝体无细胞滤液(cell-free filtrate of Flammulina velutipes, FV-CFF)还原银离子合成纳米银颗粒(AgNPs)的效果, 采用两阶段发酵培养获得无细胞滤液, 用以合成银纳米颗粒。结果显示, FV-CFF作用于AgNO3可以生成稳定的棕褐色AgNPs溶液, 在pH<5时FV-CFF还原力受到明显抑制, 在pH 5~11, 生成的AgNPs基本呈线性增长趋势。通过测定FV-CFF在pH 7.22及pH 11条件下冻融前后反应生成AgNPs的动力学曲线及阿累尼乌斯方程, 获得其表观活化能分别为98.96 kJ/mol(pH 7.22, 冻融前)、106.725 kJ/mol(pH 7.22, 冻融后)、119.82 kJ/mol(pH 11, 冻融前)、80.21 kJ/mol(pH 11, 冻融后), 结果表明pH和冻融后除去的絮状不溶物均对AgNPs的合成具有一定影响。成分分析和还原力测定结果显示, 冻融虽然会除去FV-CFF中大量的蛋白和碳水化合物, 但对还原力的影响较小, 而pH的提高则可显著提升其还原力, 而且pH 11时产物AgNPs的最大吸收波长和溶液粒径也显著降低。实验结果有助于进一步分析金针菇合成纳米颗粒的反应机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱雨婕
代安然
李佳铭
吴凡
杨崇婧
陈磊
关键词:  金针菇  液态发酵  无细胞滤液  纳米银  生物合成    
Abstract: The cell free filtrate of Flammulina velutipes (FV-CFF) obtained by two-stage fermentation was used for the synthesis of silver nanoparticles (AgNPs) and their effects were studied. The results showed that FV-CFF acted on AgNO3 to produce stable brown AgNPs solution, and AgNPs production was increased with pH elevation. The reducing power of FV-CFF on AgNO3 was significantly inhibited at pH<5, but exhibited a linear growth trend within the pH range of 5-11. The kinetic curve of AgNPs synthesis was acquired by determining AgNPs generation using FV-CFF at normal pH (7.22) and pH 11, respectively. The effect of freezing and thawing was also compared by calculating the formation kinetic curve. The apparent activation energy (Ea) obtained was 98.96 kJ/mol (pH 7.22, initial), 106.725 kJ/mol (pH 7.22, thawed), 119.82 kJ/mol (pH 11, initial), 80.21 kJ/mol (pH 11, thawed), respectively. The results of composition and reducing power determination showed that although freeze-thaw could remove a mass of proteins and carbohydrates in FV-CFF, it had a relatively low effect on reducing power. However, the increasing pH could significantly improve the reducing power of FV-CFF, and the maximum absorption wavelength and particle size of synthesized AgNPs were also significantly reduced at pH 11. The present results will be contributed to further analysis of AgNPs synthesis mechanism by F. velutipes.
Key words:  Flammulina velutipes    liquid fermentation    cell-free filtrate    silver nanoparticles    biosynthesis
收稿日期:  2020-06-27      修回日期:  2020-09-10                发布日期:  2021-03-31      期的出版日期:  2021-03-15
基金资助: 国家自然科学基金项目(21706094);江苏省自然科学基金项目(BK20170176);江苏省“双创博士”项目(2017)
作者简介:  本科生(陈磊副研究员为通讯作者, E-mail:biolchen@163.com; leichen@jiangnan.edu.cn)
引用本文:    
朱雨婕,代安然,李佳铭,等. 金针菇无细胞滤液合成纳米银颗粒[J]. 食品与发酵工业, 2021, 47(5): 71-78.
ZHU Yujie,DAI Anran,LI Jiaming,et al. Synthesis of silver nanoparticles using cell-free filtrate of Flammulina velutipes[J]. Food and Fermentation Industries, 2021, 47(5): 71-78.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.024862  或          http://sf1970.cnif.cn/CN/Y2021/V47/I5/71
[1] SINGH D K, KUMAR J, SHARMA V K, et al.Mycosynthesis of bactericidal silver and polymorphic gold nanoparticles:Physicochemical variation effects and mechanism[J].Nanomedicine, 2018, 13(2):191-207.
[2] ESKANDARI-NOJEDEHI M, JAFARIZADEH-MALMIRI H, RAHBAR-SHAHROUZI J.Hydrothermal green synthesis of gold nanoparticles using mushroom (Agaricus bisporus) extract:Physico-chemical characteristics and antifungal activity studies[J].Green Processing and Synthesis, 2018, 7(1):38-47.
[3] KUMAR S, LATHER V, PANDITA D.Green synthesis of therapeutic nanoparticles:An expanding horizon[J].Nanomedicine, 2015, 10(15):2 451-2 471.
[4] OWAID M N, IBRAHEEM I J.Mycosynthesis of nanoparticles using edible and medicinal mushrooms[J].European Journal of Nanomedicine, 2017, 9(1):5-23.
[5] FANG Y, ZHANG Y, WANG M, et al. In vitro bioaccessibility and speciation changes of selenium in Pleurotus eryngii during the growing stage[J].Food & Function, 2018, 9(8):4 493-4 499.
[6] YEHIA R S, AL-SHEIKH H.Biosynthesis and characterization of silver nanoparticles produced by Pleurotus ostreatus and their anticandidal and anticancer activities[J].World Journal of Microbiology and Biotechnology, 2014, 30(11):2 797-2 803.
[7] 董丽娜, 刘学瑞, 王慧杰, 等.秀珍菇菌丝体无细胞滤液的应用:银纳米颗粒的生物合成及其抗菌活性[J].辐射研究与辐射工艺学报, 2019, 37(5):43-50.
DONG L, LIU X, WANG H, et al.Application of cell-free filtrate of Pleurotus geesteranus mycelium:Biosynthesis of silver nanoparticles and their antimicrobial activity[J].Journal of Radiation Research and Radiation Processing, 2019, 37(5):43-50.
[8] BANERJEE K, RAVISHANKAR R V.A review on mycosynthesis, mechanism, and characterization of silver and gold nanoparticles[J].BioNanoScience, 2018, 8(1):17-31.
[9] LIU Y, ZHANG B, IBRAHIM S A, et al.Purification, characterization and antioxidant activity of polysaccharides from Flammulina velutipes residue[J].Carbohydrate Polymers, 2016, 145:71-77.
[10] NARAYANAN K B, PARK H H, HAN S S.Synthesis and characterization of biomatrixed-gold nanoparticles by the mushroom Flammulina velutipes and its heterogeneous catalytic potential[J].Chemosphere, 2015, 141:169-175.
[11] WANG J, WANG B, ZHANG D, et al.Selenium uptake, tolerance and reduction in Flammulina velutipes supplied with selenite[J].Peer J, 2016, 4:e1993.
[12] LIU C, CHEUNG P.Structure and immunomodulatory activity of microparticulate mushroom sclerotial beta-glucan prepared from Polyporus rhinocerus[J].Journal of Agricultural and Food Chemistry, 2019, 67(32):9 070-9 078.
[13] SAMROT A V, ANGALENE J, ROSHINI S M, et al.Purification, characterization and utilization of polysaccharide of Araucaria heterophylla gum for the synthesis of curcumin loaded nanocarrier[J].International Journal of Biological Macromolecules, 2019, 140:393-400.
[14] NYT 2637—2014, 水果和蔬菜可溶性固形物含量的测定 折射仪法[S].北京:中华人民共和国农业部, 2014.
NYT 2637—2014, Refractometric Method for Determination of Total Soluble Solids in Fruits and Vegetables[S].Beijing:Ministry of Agriculture of the People's Republic of China, 2014.
[15] 唐思颉, 涂传海, 胡文秀, 等.红茶菌发酵黄浆水的体外抗氧化活性[J].食品科学, 2019, 40(17):1-6.
TANG S, TU C, HU W, et al.Antioxidant activity of fermented soy whey with kombucha consortium[J].Food Science, 2019, 40(17):1-6.
[16] LIU B, ZHANG M, ZHOU C, et al.Synthesis of monodisperse, large scale and high solid content latexes of poly(n-butyl acrylate) by a one-step batch emulsion polymerization[J].Colloid and Polymer Science, 2013, 291(10):2 385-2 398.
[1] 芦楠, 李宇虹, 陈宁, 张成林. L-异亮氨酸及其衍生物代谢工程研究进展[J]. 食品与发酵工业, 2021, 47(9): 307-313.
[2] 韩宛芸, 张长懿, 顾泽鹏, 段小雨, 孙庆杰, 邱立忠, 卞希良, 邬应龙, 刘韫滔. 高产β-葡聚糖的黄伞菌株分离、鉴定及其体外模拟消化[J]. 食品与发酵工业, 2021, 47(7): 51-57.
[3] 吴力亚, 吴天祥, 汪玲. 茯苓提取物参与灰树花液态深层发酵及对其活性物质产量的影响[J]. 食品与发酵工业, 2021, 47(5): 57-62.
[4] 张雨, 贠建民, 毕阳, 王霆, 刘宏. 乳酸钙处理结合纳米包装提升金针菇贮藏品质[J]. 食品与发酵工业, 2020, 46(9): 201-208.
[5] 王祺, 张军, 乔晓妮, 何增国. 片球菌素的来源、生物合成、抑菌机理及其构效关系的研究进展[J]. 食品与发酵工业, 2020, 46(9): 278-284.
[6] 周珂, 严鹏程, 胡永丹. 高产橙黄色素低产桔霉素红曲菌的液态发酵条件优化[J]. 食品与发酵工业, 2020, 46(7): 116-122.
[7] 张阳玲, 吴昊, 乔建军, 李艳妮. 乳酸链球菌肽的应用及研究进展[J]. 食品与发酵工业, 2020, 46(7): 289-295.
[8] 刘慧菊, 韩丽娟, 乔杨波, 王树林, 焦迎春, 叶英. 不同微生物液态发酵对蚕豆蛋白营养价值及功能特性的影响[J]. 食品与发酵工业, 2020, 46(4): 65-71.
[9] 赵嫚, 彭莉, 成浩, 应向贤, 汪钊. 微生物甲硫氨酸合成调控的综合研究进展与展望[J]. 食品与发酵工业, 2020, 46(24): 257-264.
[10] 王帅, 庄以彬, 刘浩, 毕慧萍, 刘涛. 大肠杆菌混菌发酵生产咖啡醇糖苷[J]. 食品与发酵工业, 2020, 46(23): 7-13.
[11] 宁亚维, 马梦戈, 杨正, 侯琳琳, 赵忠情, 陈艺, 王志新, 贾英民. γ-氨基丁酸的制备方法及其功能食品研究进展[J]. 食品与发酵工业, 2020, 46(23): 238-247.
[12] 李国玮, 游淳. 二糖磷酸化酶及其在体外合成生物学中的应用[J]. 食品与发酵工业, 2020, 46(21): 284-291.
[13] 管宏伟, 刘婷婷, 陈磊, 许赣荣, 张薄博. 红曲菌液态发酵产天然黄色素的条件优化[J]. 食品与发酵工业, 2020, 46(2): 150-156.
[14] 李雅婷, 周丽, 周哲敏. 大肠杆菌中三酶耦联合成α-酮异戊酸[J]. 食品与发酵工业, 2020, 46(13): 18-23.
[15] 肖瑶, 杨建远, 张炳火, 王萍兰, 杨云仙, 查代明. 白耙齿菌F036液态发酵产纤维素酶条件优化及纤维素酶酶学性质初步研究[J]. 食品与发酵工业, 2019, 45(6): 70-76.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn