Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (4): 102-109    DOI: 10.13995/j.cnki.11-1802/ts.024863
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
不同培养条件下酿酒酵母菌的转录组差异分析
杨新1,4, 陈莉1,2*, 杨双全3*, 卢红梅1,2, 章之柱1,2
1(贵州大学,贵州省发酵工程与生物制药重点实验室,贵州 贵阳, 550025)
2(贵州大学 酿酒与食品工程学院,贵州 贵阳, 550025)
3(贵州大学 化学与化工学院,贵州 贵阳, 550025)
4(开阳县市场监督管理局,贵州 贵阳, 550300)
Transcriptome analysis of Saccharomyces cerevisiae under different culture conditions
YANG Xin1,4, CHEN Li1,2*, YANG Shuangquan3*, LU Hongmei1,2, ZHANG Zhizhu1,2
1(Guizhou Key Lab of Fermentation Engineering and Biological Pharmacy, Guizhou University, Guiyang 550025, China)
2(School of Liquor-making and Food Engineering, Guizhou University, Guiyang 550025, China)
3(School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China)
4(Market Supervision Administration of KaiYang, Guiyang 550300, China)
下载:  HTML   PDF (7376KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 从组学水平分析富硒条件下酿酒酵母菌(Saccharomyces cerevisiae)内在分子机制,为酿酒酵母菌富硒研究及富硒基因的挖掘利用提供理论依据。该研究以不加硒培养的酿酒酵母菌作为对照组Kb,以加20 μg/mL硒培养的酿酒酵母菌为实验组Se,利用Illumina高通量测序平台对两组进行转录组测序,通过生物信息学方法对数据进行分析处理。结果表明,转录组测序共获得6 445个Unigenes,分别有1 401个(21.74%)、3 665个(56.87%)、5 630个(87.35%)、6 112个(94.83%)、6 077个(94.29%)、5 059个(78.49%) Unigenes被注释到GO、KEGG、COG、NR、Swiss Prot和Pfam数据库,共有6 150个(95.42%)Unigenes得到注释。在GO功能注释中,共得到41个GO功能小类,在KEGG代谢通路分析时,获得了113条KEGG通路。该转录组测序数据质量高,结果覆盖面广,为酿酒酵母菌富硒基因挖掘和研究提供了一定的理论参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨新
陈莉
杨双全
卢红梅
章之柱
关键词:  酿酒酵母菌  富硒培养  转录组学  生物信息学  差异分析    
Abstract: To analyze the internal molecular mechanism of Saccharomyces cerevisiae under selenium-enriched conditions from the omics level and provide a theoretical basis for the study of selenium-enriched S. cerevisiae and the mining and utilization of selenium-enriched genes, S. cerevisiae cultured without selenium was used as the control group Kb, and S. cerevisiae cultured with 20 μg/mL selenium was used as the experimental group Se. Illumina high-throughput sequencing platform was used to sequence the transcriptome. Data were analyzed and processed by a variety of bioinformatics methods. The results showed that a total of 6 445 Unigenes were obtained by transcriptome sequencing, including 1 401 (21.74%), 3 665 (56.87%), 5 630 (87.35%), 6 112 (94.83%), 6 077 (94.29%) and 5 059 (78.49%) Unigenes were annotated to GO, KEGG, COG, NR, Swiss Prot and Pfam databases, and a total of 6 150 (95.42%) Unigenes were annotated. In the GO functional annotation, a total of 41 GO functional subclasses were obtained, and 113 KEGG pathways were obtained in the KEGG metabolic pathway analysis. The high-quality transcriptome sequencing data and wide coverage provide a certain theoretical reference for selenium-enriched gene mining and research of S. cerevisiae.
Key words:  Saccharomyces cerevisiae    selenium-rich culture    transcriptomics    bioinformatics    variance analysis
收稿日期:  2020-06-27      修回日期:  2020-09-01           出版日期:  2021-02-25      发布日期:  2021-03-16      期的出版日期:  2021-02-25
基金资助: 贵州省科技支撑计划项目(黔科合支撑[2019]2317号)
作者简介:  硕士研究生(陈莉副教授和杨双全副教授为共同通讯作者,E-mail:3152539622@qq.com;441221916@qq.com)
引用本文:    
杨新,陈莉,杨双全,等. 不同培养条件下酿酒酵母菌的转录组差异分析[J]. 食品与发酵工业, 2021, 47(4): 102-109.
YANG Xin,CHEN Li,YANG Shuangquan,et al. Transcriptome analysis of Saccharomyces cerevisiae under different culture conditions[J]. Food and Fermentation Industries, 2021, 47(4): 102-109.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.024863  或          http://sf1970.cnif.cn/CN/Y2021/V47/I4/102
[1] TSAI C F, OU B R, LIANG Y C, et al.Growth inhibition and antioxidative status induced by selenium-enriched broccoli extract and selenocompounds in DNA mismatch repair-deficient human colon cancer cells[J].Food Chemistry, 2013, 139(1):267-273.
[2] FAIRWEATHER-TAIT S, BAO Y, BROADLEY M R, et al.Selenium in human health and disease[J].Antioxidants & Redox Signaling, 2011,14(7):1 337-1 383.
[3] El-DEMERDASH F M.Antioxidant effect of vitamin E and selenium on lipid peroxidation, enzyme activities and biochemical parameters in rats exposed to aluminium[J].Journal of Trace Elements in Medicine and Biology, 2004, 18(1):113-121.
[4] BRYSZEWSKA M A, MAGE A.Determination of selenium and its compounds in marine organisms[J].Journal of Trace Elements in Medicine and Biology, 2015, 29(1):91-98.
[5] 王磊,杜菲,孙卉,等.人体硒代谢与硒营养研究进展[J].生物技术进展,2015,5(4):285-290.
WANG L, DU F, SUN H, et al.Progress on selenium metabolism and nutrition in human[J].Current Biotechnology, 2015, 5(4):285-290.
[6] IP C, DONG Y, GANTHER H.New concepts in seleniu chemoprevention[J].Cancer and Metastasis Reviews, 2002, (21):281-289.
[7] XUE M, CARLSON B A, GRIMM T A, et a1.Rhesus monkey simian immunodeficiency virus infection as a model for assessing the role of selenium in AIDS[J].Journal of Acquired Immune Deficiency Syndromes, 2002, 31(5):453-463.
[8] TAN J, ZHU W, Wang W, et a1.Selenium in soil and endemic diseases in China[J].Science of The Total Environment, 2002, 284:227-235.
[9] HOU J, WANG T, LIU M F, et al.Suboptimal selenium supply:A continuing problem in Keshan disease areas in Heilongjiang province[J].Biological Trace Element Research, 2011, 143(3):1 255-1 263.
[10] LIN Y L, CHANG Y Y, YANG D J, et al.Beneficial effects of noni (Morinda citrifolia L.) juice on livers of high-fat dietary hamsters[J].Food chemistry, 2013, 140(1):31-38.
[11] CRISTALDI L A, MCDOWELL L R, BUERGELT C D, et al.Tolerance of inorganic selenium in wether sheep[J].Small Ruminant Research, 2005, 56(1):205-213.
[12] ABBOTT D A, ZELLE R M, PRONK J T, et al.Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids:Current status and challenges[J].FEMS Yeast Research, 2009, 9:1 123-1 136.
[13] LIAN J, MISHRA S, ZHAO H.Recent advances in metabolic engineering of Saccharomyces cerevisiae:New tools and their applications[J].Metabolic Engineering, 2018, 50:85-108.
[14] SULTAN M, SCHULZ M H, RICHARD H, et al.A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome[J].Science, 2008, 321(5 891):956-960.
[15] SCHUSTER S C.Next-generation sequencing transforms today's biology[J].Nature Methods, 2008, 5(1):16-18.
[16] 聂文强,吴天祥,钟敏,等.真菌灰树花菌丝体转录组测序及分析[J].食品科学,2017,38(20):6-11.
NIE W Q, WU T X, ZHONG M, et al.Transcriptome sequencing and analysis of grifola frondosa mycelia[J].Food Science, 2017, 38(20):6-11.
[17] 宋雪飞,郭晶晶,姜静,等.植物乳杆菌FS5-5在盐胁迫下的转录组学分析[J].食品科学,2017,38(6):20-26.
SONG X F, GUO J J, JIANG J, et al.Transcriptomic analyses of Lactobacillus plantarum FS5-5 against salt stress[J].Food Science, 2017, 38(6):20-26.
[18] QI Y X, LIU Y B, RONG W H.RNA-Seq and its applications:A new technology for transcriptomics[J].Hereditas, 2011, 33(11):1 191-1 202.
[19] 周华,张新,刘腾云,等.高通量转录组测序的数据分析与基因发掘[J].江西科学,2012,30(5):607-611.
ZHOU H, ZHANG X, LIU T Y, et al.Data processing and gene discovery of high-throughput transcriptome sequencing[J].Jiangxi Science, 2012, 30(5):607-611.
[20] 许波,张伟强,冯晓曦,等.转录组测序技术在玉米中的应用研究进展[J].玉米科学,2014,22(1):67-72;78.
XU B, ZHANG W Q, FENG X X, et al.Application progress of transcriptome sequencing technology in maize[J].Journal of Maize Sciences, 2014, 22(1):67-72;78.
[21] QI Y X, LIU Y B, RONG W H.RNA-Seq and its applications:A new technology for transcriptomics[J].Hereditas(Beijing), 2011, 33(11):1 191-1 202.
[22] 石浩然. 基于二代测序的转录组数据分析方法的比较研究[D].雅安:四川农业大学,2016.
SHI H R.Comparison of transcriptome analysis methods based on next-generation sequencing technologies[D].Ya'an:Sichuan Agricultural University, 2016.
[23] 姚娜,刘秀明,董园园,等.转录组的测序方法及应用研究概述[J].北方园艺,2017(12):192-198.
YAO N, LIU X M, DONG Y Y, et al.Advances in application and seguencing methods of transcriptome[J].Northern Horticulture, 2017(12):192-198.
[24] WANG J, DEAN D C, HORNICEK F J, et al.RNA sequencing (RNA-Seq) and its application in ovarian cancer[J].Gynecologic oncology,2019,152(1):194-201.
[25] SALIBA A E, C SANTOS S, VOGEL J.New RNA-seq approaches for the study of bacterial pathogens[J].Current Opinion in Microbiology, 2017, 35:78-87.
[26] 叶美玲. 南极酵母AN5重金属Cu2+胁迫的转录组学研究[D].哈尔滨:哈尔滨工业大学,2015.
YE M L.Transcriptomics of antarctic yeast an5 under heavy metal(Cu2+)Stress[D].Harbin:Harbin Institute of Technology, 2015.
[27] TRAPNELL C, PACHTER L, SALZBERG S L.TopHat:Discovering splice junctions with RNA-Seq[J].Bioinformatics, 2009, 25(9):1 105-1 111.
[28] PATIL K V, CANLON B, CEDERROTH C R.High quality RNA extraction of the mammalian cochlea for qRT-PCR and transcriptome analyses[J].Hearing Research, 2015, 325(7):42-48.
[29] ANDERS S, HUBER W.Differential expression analysis for sequence count data[J].Genome Biology, 2010, 11(10):106-107.
[30] LOVE M I, HUBER W, ANDERS S.Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J].Genome Biology, 2014, 15(12):550-553.
[1] 王巧莉, 孔梓璇, 谭强飞, 贠建民, 张紊玮, 赵风云. 草菇组织分离继代中菌种退化对相关酶活力的影响[J]. 食品与发酵工业, 2021, 47(8): 1-5.
[2] 张强, 李伟华. 抗氧化肽的研究现状[J]. 食品与发酵工业, 2021, 47(2): 298-304.
[3] 田甜甜, 孙军勇, 蔡国林, 杨华, 吴殿辉, 陆健. 基于转录组学的酿酒酵母耐酸机制解析[J]. 食品与发酵工业, 2020, 46(6): 1-7.
[4] 杨平, 张边江, 王立科, 扶庆权, 唐宁, 陈全战. 豆科家族中的木糖异构酶基因分析[J]. 食品与发酵工业, 2020, 46(19): 23-27.
[5] 魏雯丽, 宫尾茂雄, 吴正云, 张文学. 基于宏转录组学技术解析工业豇豆泡菜发酵过程中活性微生物群落结构变化[J]. 食品与发酵工业, 2020, 46(10): 60-65.
[6] 邓茜莹,李缓缓,曾荣急,李桂玲,刘静雯,李健. 紫菜发酵提取物的体外降血脂功能分析[J]. 食品与发酵工业, 2019, 45(12): 109-113.
[7] 赵彤彤,赵微,王丹,赵国芬,刘扬,张和平,包秋华. 植物乳杆菌P-8羟基脂肪酸脱氢酶的克隆表达及活性鉴定[J]. 食品与发酵工业, 2019, 45(1): 36-40.
[8] 赵圣明,赵岩岩,马汉军,别小妹. 转录组学在抑菌机制中的应用研究进展[J]. 食品与发酵工业, 2017, 43(7): 259-.
[9] 涂庭勇,贾禄强,孙佼文,陈珊珊,史仲平. “低甲醇浓度-高溶解氧浓度”策略诱导毕赤酵母高效表达HSA-GCSFm及其转录组学机理分析[J]. 食品与发酵工业, 2017, 43(3): 1-.
[10] 宋元德. 《食品检验机构资质认定条件》制度建立与新旧版比较研究[J]. 食品与发酵工业, 2017, 43(11): 268-.
[11] 孙金凤,田康明,沈微,陈献忠,王正祥. 大肠杆菌不同菌株木糖代谢差异性的遗传本质[J]. 食品与发酵工业, 2017, 43(10): 73-78.
[12] 赵璐瑶,杨曙明,侯粲,程永友,游新勇,张严化. 基于生物标志物监测动物生产中药物滥用的研究进展[J]. 食品与发酵工业, 2015, 41(9): 230-.
[13] 宋青楠,许芹永,朱靖博. 利用薯蓣皂素生产废水发酵生产谷胱甘肽[J]. 食品与发酵工业, 2012, 38(03): 120-122.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn