Please wait a minute...
食品与发酵工业  2020, Vol. 46 Issue (21): 277-283    DOI: 10.13995/j.cnki.11-1802/ts.024874
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
周胜虎1,2, 毛银1,2, 邓禹1,2*
1(粮食发酵工艺与技术国家工程实验室(江南大学),江苏 无锡,214122);
2(江南大学,江苏省生物活性制品加工工程技术研究中心,江苏 无锡,214122)
Research progress on the dynamic regulation of spatiotemporal level in the fermentation process
ZHOU Shenghu1,2, MAO Yin1,2, DENG Yu1,2*
1(National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China);
2(Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China)
下载:  HTML   PDF (2495KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 微生物发酵是一个复杂的动态变化过程,细胞生长环境的不断变化增加了代谢调控的难度。此外,发酵系统是一个混合体系,同时存在着具有不同生产性能以及处于不同生长状态的细胞。因此,如何基于细胞内外环境变化动态调控代谢网络,实现所有细胞的最佳生长和产物合成状态,是目前发酵工程和代谢工程的研究重点。该文以影响细胞代谢流量变化因素的时空分布特性为基础,分别介绍了物理化学环境、胞内产物和胞外产物驱动的动态调控策略,为发酵过程的精准控制提供理论和技术参考。
E-mail Alert
关键词:  代谢工程  代谢流量  生物传感器  胞内产物  胞外产物    
Abstract: Given that microbial fermentation is a complicated and dynamic process, it is difficult to regulate the metabolic flux due to the changing conditions in cellular growth. Furthermore, the fermentation system is a mixture which contains nongenetic variants with different production performance as well as different growth states. The current focus of fermentation engineering and metabolic engineering is how to simultaneously achieve the optimum growth and production states of individual cell in the fluctuating intra- and extra-cellular environment by dynamically regulating the metabolic network. According to the spatiotemporal distribution properties of metabolic flux perturbance factors, this review highlights the physical and chemical environment-based dynamic regulation strategies, and intracellular or extracellular metabolites-based dynamic regulation strategies. Theoretical and technical references for precise controlling of the fermentation process were also summarized.
Key words:  metabolic engineering    metabolic flux    biosensor    intracellular metabolite    extracellular metabolite
收稿日期:  2020-06-28      修回日期:  2020-06-30           出版日期:  2020-11-15      发布日期:  2020-12-11      期的出版日期:  2020-11-15
基金资助: 国家重点研发计划项目(2019YFA0905500);国家自然科学基金项目(31900066; 21877053)
作者简介:  博士,助理研究员(邓禹教授为通讯作者,
周胜虎,毛银,邓禹. 发酵过程中时空水平的动态调控策略研究进展[J]. 食品与发酵工业, 2020, 46(21): 277-283.
ZHOU Shenghu,MAO Yin,DENG Yu. Research progress on the dynamic regulation of spatiotemporal level in the fermentation process[J]. Food and Fermentation Industries, 2020, 46(21): 277-283.
链接本文:  或
[1] ZHOU S,HAO T,XU S,et al.Coenzyme A thioester-mediated carbon chain elongation as a paintbrush to draw colorful chemical compounds[J].Biotechnology Advances,2020,43:107 575.
[2] CRAVENS A,PAYNE J,SMOLKE C D.Synthetic biology strategies for microbial biosynthesis of plant natural products[J].Nature Communications,2019,10(1):2 142.
[3] LIAN J,MISHRA S,ZHAO H.Recent advances in metabolic engineering of Saccharomyces cerevisiae:New tools and their applications[J].Metabolic Engineering,2018,50:85-108.
[4] LIN J L,WAGNER J M,ALPER H S.Enabling tools for high-throughput detection of metabolites:Metabolic engineering and directed evolution applications[J].Biotechnology Advances,2017,35(8):950-970.
[5] PANDEY R P,PARAJULI P,KOFFAS M A G,et al.Microbial production of natural and non-natural flavonoids:Pathway engineering,directed evolution and systems/synthetic biology[J].Biotechnology Advances,2016,34(5):634-662.
[6] ZHA J,WU X,GONG G,et al.Pathway enzyme engineering for flavonoid production in recombinant microbes[J].Metabolic Engineering Communications,2019,9:e00104.
[7] DIAO J J,SONG X Y,GUO T H,et al.Cellular engineering strategies toward sustainable omega-3 long chain polyunsaturated fatty acids production:State of the art and perspectives[J].Biotechnology Advances,2020,40:107497.
[8] ZHANG L S,LIANG S,ZONG M H,et al.Microbial synthesis of functional odd-chain fatty acids:A review[J].World Journal of Microbiology & Biotechnology,2020,36(3):35.
[9] LIU N,LIU B,WANG G Y,et al.Lycopene production from glucose,fatty acid and waste cooking oil by metabolically engineered Escherichia coli[J].Biochemical Engineering Journal,2020,155:107 488.
[10] MA Y R,WANG K F,WANG W J,et al.Advances in the metabolic engineering of Yarrowia lipolytica for the production of terpenoids[J].Bioresource Technology,2019,281:449-456.
[11] ZHANG C,HONG K.Production of terpenoids by synthetic biology approaches[J].Frontiers in Bioengineering and Biotechnology,2020,8:347.
[12] CHOI K R,JIAO S,LEE S Y.Metabolic engineering strategies toward production of biofuels[J].Current Opinion in Chemical Biology,2020,59:1-14.
[13] PENG L,FU D,CHU H,et al.Biofuel production from microalgae:A review[J].Environmental Chemistry Letters,2020,18(2):285-297.
[14] SHANMUGAM S,NGO H H,WU Y R.Advanced CRISPR/Cas-based genome editing tools for microbial biofuels production:A review[J].Renewable Energy,2020,149:1 107-1 119.
[15] ZHAO M,HUANG D,ZHANG X,et al.Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway[J].Metabolic Engineering,2018,47:254-262.
[16] ZHAO M,LI G,DENG Y.Engineering Escherichia coli for glutarate production as the C5 platform backbone[J].Applied and Environmental Microbiology,2018,84(16):e00 814-818.
[17] SHEN X L,WANG J,LI C Y,et al.Dynamic gene expression engineering as a tool in pathway engineering[J].Current Opinion in Biotechnology,2019,59:122-129.
[18] XIAO Y,BOWEN C H,LIU D,et al.Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis[J].Nature Chemical Biology,2016,12(5):339.
[19] LIU Y,ZHUANG Y,DING D,et al.Biosensor-based evolution and elucidation of a biosynthetic pathway in Escherichia coli[J].ACS Synthetic Biology,2017,6:837-848.
[20] WANG Q Z,TANG S Y,YANG S.Genetic biosensors for small-molecule products:Design and applications in high-throughput screening[J].Frontiers of Chemical Science and Engineering,2017,11(1):15-26.
[21] MIN B E,HWANG H G,LIM H G,et al.Optimization of industrial microorganisms:Recent advances in synthetic dynamic regulators[J].Journal of Industrial Microbiology & Biotechnology,2017,44(1):89-98.
[22] ZHENG Y,MENG F,ZHU Z,et al.A tight cold-inducible switch built by coupling thermosensitive transcriptional and proteolytic regulatory parts[J].Nucleic Acids Research,2019,47(21):e137.
[23] HARDER B J,BETTENBROCK K,KLAMT S.Temperature-dependent dynamic control of the TCA cycle increases volumetric productivity of itaconic acid production by Escherichia coli[J].Biotechnology and Bioengineering,2018,115(1):156-164.
[24] SUN J,TIAN K,WANG J,et al.Improved ethanol productivity from lignocellulosic hydrolysates by Escherichia coli with regulated glucose utilization[J].Microbial Cell Factories,2018,17(1):66.
[25] YIN X,SHIN H D,LI J,et al.Pgas,a low-pH-induced promoter,as a tool for dynamic control of gene expression for metabolic engineering of Aspergillus niger[J].Applied and Environmental Microbiology,2017,83(6):e03 222-16.
[26] RAJKUMAR A S,LIU G,DAVID B,et al.Engineering of synthetic,stress-responsive yeast promoters[J].Nucleic Acids Research,2016,44(17):e136.
[27] AUSL NDER D,AUSL NDER S,CHARPIN-EL HAMRI G,et al.A synthetic multifunctional mammalian pH sensor and CO2 transgene-control device[J].Molecular Cell,2014,55(3):397-408.
[28] JOHNSON A O,GONZALEZ-VILLANUEVA M,WONG L,et al.Design and application of genetically-encoded malonyl-CoA biosensors for metabolic engineering of microbial cell factories[J].Metabolic Engineering,2017,44:253-264.
[29] XU P,LI L Y,ZHANG F M,et al.Improving fatty acids production by engineering dynamic pathway regulation and metabolic control[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(31):11 299-11 304.
[30] ZHANG F Z,CAROTHERS J M,KEASLING J D.Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids[J].Nature Biotechnology,2012,30(4):354-359.
[31] XU P,WANG W Y,LI L Y,et al.Design and kinetic analysis of a hybrid promoter-regulator system for malonyl-CoA sensing in Escherichia coli[J].ACS Chemical Biology,2014,9(2):451-458.
[32] LIU D,MANNAN A A,HAN Y,et al.Dynamic metabolic control:Towards precision engineering of metabolism[J].Journal of Industrial Microbiology & Biotechnology,2018,45(7):535-543.
[33] DINH C V,PRATHER K L J.Layered and multi-input autonomous dynamic control strategies for metabolic engineering[J].Current Opinion in Biotechnology,2020,65:156-162.
[34] LIU D,EVANS T,ZHANG F.Applications and advances of metabolite biosensors for metabolic engineering[J].Metabolic Engineering,2015,31:35-43.
[35] CHOU H H,KEASLING J D.Programming adaptive control to evolve increased metabolite production[J].Nature Communication,2013,4:2595.
[36] WU J,LIU Y F,ZHAO S,et al.Application of dynamic regulation to increase L-phenylalanine production in Escherichia coli[J].Journal of Microbiology and Biotechnology,2019,29(6):923-932.
[37] KR MER R.Systems and mechanisms of amino acid uptake and excretion in prokaryotes[J].Archives of Microbiology,1994,162(1):1-13.
[38] HALPERN Y S.Genetics of amino acid transport in bacteria[J].Annual Review of Genetics,1974,8(1):103-133.
[39] YAZAKI K.Transporters of secondary metabolites[J].Current Opinion in Plant Biology,2005,8(3):301-307.
[40] BURNS B P,MENDZ G L.‘Metabolite Transport',in Helicobacter pylori:Physiology and genetics[M].Washington (DC):ASM Press,2001.
[41] MINAGAWA S,INAMI H,KATO T,et al.RND type efflux pump system MexAB-OprM of pseudomonas aeruginosa selects bacterial languages,3-oxo-acyl-homoserine lactones,for cell-to-cell communication[J].BMC Microbiology,2012,12:70.
[42] PEARSON J P,VAN DELDEN C,IGLEWSKI B H.Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals[J].Journal of Bacteriology,1999,181(4):1 203-1 210.
[43] PRESCOTT R D,DECHO A W.Flexibility and adaptability of quorum sensing in nature[J].Trends in Microbiology,2020,28(6):436-444.
[44] SCHUSTER M,SEXTON D J,DIGGLE S P,et al.Acyl-homoserine lactone quorum sensing:From evolution to application[J].Annual Review of Microbiology,2013,67(1):43-63.
[45] KIM E M,MIN WOO H,TIAN T,et al.Autonomous control of metabolic state by a quorum sensing (QS)-mediated regulator for bisabolene production in engineered E.coli[J].Metabolic Engineering,2017,44:325-336.
[46] DINH C V,PRATHER K L.Development of an autonomous and bifunctional quorum-sensing circuit for metabolic flux control in engineered Escherichia coli[J].Proceedings of the National Academy of Sciences of the United States of America,2019,116(51):25 562-25 568.
[47] YANG Y,LIN Y,WANG J,et al.Sensor-regulator and RNAi based bifunctional dynamic control network for engineered microbial synthesis[J].Nature Communications,2018,9(1):3 043.
[48] LO T M,CHNG S H,TEO W S,et al.A two-layer gene circuit for decoupling cell growth from metabolite production[J].Cell Systems,2016,3(2):133-143.
[49] MOSER F,BORUJENI A E,GHODASARA A N,et al.Dynamic control of endogenous metabolism with combinatorial logic circuits[J].Molecular Systems Biology,2018,14(11):e8605.
[50] GUPTA A,REIZMAN I M,REISCH C R,et al.Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit[J].Nature Biotechnology,2017,35(3):273-279.
[51] DOONG S J,GUPTA A,PRATHER K L.Layered dynamic regulation for improving metabolic pathway productivity in Escherichia coli[J].Proceedings of the National Academy of Sciences of the United States of America,2018,115(12):2 964-2 969.
[52] KAMINSKI T S,SCHELER O,GARSTECKI P.Droplet microfluidics for microbiology:Techniques,applications and challenges[J].Lab on a Chip,2016,16(12):2 168-2 187.
[53] BOWMAN E K,ALPER H S.Microdroplet-assisted screening of biomolecule production for metabolic engineering applications[J].Trends in Biotechnology,2020,38(7):701-714.
[1] 钱蕾, 刘延峰, 李江华, 刘龙, 堵国成. 适应性进化和改造质粒稳定性促进枯草芽孢杆菌合成N-乙酰神经氨酸[J]. 食品与发酵工业, 2021, 47(5): 1-6.
[2] 李晨晨, 李梦丽, 江波, 张涛. 2'-岩藻糖基乳糖的生物合成菌株构建及发酵条件研究[J]. 食品与发酵工业, 2021, 47(3): 10-17.
[3] 曲丽莎, 于文文, 吕雪芹, 李江华, 堵国成, 刘龙. 生物-化学法合成维生素D的研究进展[J]. 食品与发酵工业, 2021, 47(1): 276-284.
[4] 郑鹏, 张孟娟, 黄思瑶, 康新玥, 陈叶福. 过表达乙酰-CoA相关基因提高出芽短梗霉liamocins合成能力[J]. 食品与发酵工业, 2020, 46(9): 25-30.
[5] 朱福周, 芦楠, 李宇虹, 林蓓蓓, 郑颖楠, 王子申, 陈宁, 张成林. 增强回补途径对谷氨酸棒状杆菌合成L-异亮氨酸的影响[J]. 食品与发酵工业, 2020, 46(2): 11-17.
[6] 胡立涛, 王阳, 李佳莲, 周思延, 王道安, 尹国斌, 刘京京, 康振, 陈坚. 代谢工程改造谷氨酸棒杆菌合成透明质酸[J]. 食品与发酵工业, 2020, 46(18): 1-7.
[7] 杨帆, 苏卜利, 王永红, 张玉莲, 黄桦瑞, 张秀秀, 朱红惠. 启动子对重组大肠杆菌合成番茄红素能力的影响[J]. 食品与发酵工业, 2020, 46(17): 27-32.
[8] 孙颖颖, 董鹏程, 朱立贤, 张一敏, 罗欣, 毛衍伟. 食源性致病菌快速检测研究进展[J]. 食品与发酵工业, 2020, 46(17): 264-270.
[9] 曾慧君, 付诗慧, 晏涛, 杨小平, 刘萍, 徐玮, 董秋花, 郦娟. 核酸适配体生物传感器在食源性致病菌检测中的应用[J]. 食品与发酵工业, 2020, 46(17): 277-284.
[10] 季安营, 魏雪团. 改造非磷酸转移酶葡萄糖转运途径强化解淀粉芽胞杆菌合成L-酪氨酸[J]. 食品与发酵工业, 2020, 46(15): 27-31.
[11] 刘洁, 王宏涛, 钱和, 徐建中, 张伟国. 基于代谢工程构建产β-胡萝卜素重组毕赤酵母[J]. 食品与发酵工业, 2020, 46(11): 32-37.
[12] 姜聪, 郭爱玲, 魏雪团. 通过敲除解淀粉芽胞杆菌表面活性剂基因促进S-腺苷甲硫氨酸合成[J]. 食品与发酵工业, 2020, 46(11): 17-22.
[13] 牛腾飞, 李江华, 堵国成, 刘龙, 陈坚. 微生物法合成N-乙酰氨基葡萄糖及其衍生物的研究进展[J]. 食品与发酵工业, 2020, 46(1): 274-279.
[14] 蒋娟娟, 丁新怡, 倪俊, 董益阳, 陈浣, 闻红, 刘佳蕙. 基于COI 基因的丝网印刷电极生物传感器应用于肉品鉴别技术研究[J]. 食品与发酵工业, 2019, 45(23): 270-275.
[15] 欧阳小丹, 李文, 察亚平, 朱晁谊, 李爽. 重组酿酒酵母发酵生产瓦伦西亚烯及其衍生物[J]. 食品与发酵工业, 2019, 45(20): 7-15.
No Suggested Reading articles found!
Full text



版权所有 © 《食品与发酵工业》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持