Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (2): 1-7    DOI: 10.13995/j.cnki.11-1802/ts.024907
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
TOR1基因缺失对酿酒酵母耐受性的影响
张晓晓, 任剑星, 刘凯毅, 李潇, 董健*
(天津科技大学 生物工程学院,工业发酵微生物教育部重点实验室,天津,300457)
Effects of TOR1 gene deletion on the tolerance of Saccharomyces cerevisiae
ZHANG Xiaoxiao, REN Jianxing, LIU Kaiyi, LI Xiao, DONG Jian*
(College of Bioengineering,Tianjin University of Science and Technology,Key Laboratory of Industrial Fermentation Microbiology,Ministry of Education,Tianjin 300457,China)
下载:  HTML   PDF (4461KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 酿酒酵母是最常见且应用最为广泛的酵母菌种,是以糖质和淀粉质为原料的乙醇发酵最经典的菌株。在发酵过程中,有很多不可避免的胁迫环境如高温条件、高渗条件等出现,这些胁迫会阻碍细胞生长并降低细胞的发酵能力,给发酵行业带来一定的经济损失。因此,为改善菌种的耐受性,该研究主要以实验室现有菌株AY12a为亲本菌株,URA3基因作筛选标记,通过胞内同源重组,实现TOR1基因的敲除,最终成功构建突变株AY12a-tor1Δ。对酵母进行耐受性的测定,发现AY12a-tor1Δ具有一定的耐高温性能,在高渗条件下也有一定的耐受性,同时具有一定的氧化环境耐受性。同时将突变株与AY12a进行模拟白酒发酵(玉米浓醪发酵),并对发酵完成后的酒度、残糖、48 h细胞存活率、CO2失重及发酵时间进行测定。发酵数据显示突变株AY12a-tor1Δ乙醇产量有所上升,残糖含量下降,48 h细胞存活率没有下降,发酵时间有所延长。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张晓晓
任剑星
刘凯毅
李潇
董健
关键词:  酿酒酵母  耐受性  TOR1  乙醇  浓醪发酵    
Abstract: Saccharomyces cerevisiae is the most common and widely used yeast strain,and it is the most classic strain of ethanol fermentation using saccharide and starch as raw materials.Yeasts are confronted with several inevitable environmental stresses such as hyper-osmotic stress,high temperature,which can negatively affect yeast growth rate and fermentation performance.This will cause some economic losses in related fermentation industry.In order to improve stress tolerance,strain AY12a was used as the starting strain,the URA3 gene was used as a screening marker,and the long primer knockout method was used to realize the gene deletion in this study.Finally,the mutant strain AY12a-tor1Δ was successfully constructed.Tolerance determination of yeast showed that AY12a-tor1Δ had certain high temperature resistance,oxidation environment tolerance and had certain tolerance under other stress conditions.AY12a-tor1Δ and AY12a were participated in high-temperature concentrated fermentation of corn,and the alcohol content,residual sugar,48h cell survival rate,CO2 weight loss and fermentation time after fermentation were determined.The results showed that the ethanol yield of the mutant strain AY12a-tor1Δ increased,the residual sugar content decreased,the cell survival rate did not decrease at 48 h,and the fermentation time was prolonged.
Key words:  Saccharomyces cerevisiae    stress-tolerance    TOR1    ethanol    concentrated fermentation
收稿日期:  2020-07-02      修回日期:  2020-09-01           出版日期:  2021-01-25      发布日期:  2021-02-07      期的出版日期:  2021-01-25
基金资助: 国家自然科学基金项目(31671838)
作者简介:  硕士研究生(董健副教授为通讯作者,E-mail:dongjian@tust.edu.cn)
引用本文:    
张晓晓,任剑星,刘凯毅,等. TOR1基因缺失对酿酒酵母耐受性的影响[J]. 食品与发酵工业, 2021, 47(2): 1-7.
ZHANG Xiaoxiao,REN Jianxing,LIU Kaiyi,et al. Effects of TOR1 gene deletion on the tolerance of Saccharomyces cerevisiae[J]. Food and Fermentation Industries, 2021, 47(2): 1-7.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.024907  或          http://sf1970.cnif.cn/CN/Y2021/V47/I2/1
[1] 沈煜,王颖,鲍晓明,等.酿酒酵母木糖发酵酒精途径工程的研究进展[J].生物工程学报,2003,19(5):636-640.
SHEN Y,WANG Y,BAO X M,et al.Progress in the pathway engineering of ethanol fermentation from xylose utilising recombinant Saccharomyces cerevisiae[J].Chinese Journal of Biotechnology,2003,19(5):636-640.
[2] 刘秀颖,何秀萍,卢莹,等.基于基因组DNA诱变的遗传重组改造乙醇工业酵母的耐热性及发酵性能[J].生物工程学报,2011,27(7):1 049-1 056.
LIU X Y,HE X P,LU Y,et al.Improvement of thermal adaptability and fermentation of industrial ethanologenic yeast by genomic DNA mutagenesis-based genetic recombination[J].Chinese Journal of Biotechnology,2011,27(7):1 049-1 056.
[3] CARDENAS M E,CUTLER N S,LORENZ M C,et al.The TOR signaling cascade regulates gene expression in response to nutrients[J].Genes Dev,1999,13(24):3 271-3 279.
[4] LOEWITH R,JACINTO E,WULLSCHLEGER S,et al.Two TOR complexes,only one of which is rapamycin sensitive,have distinct roles in cell growth control[J].Molecular Cell,2002,10(3):457-468.
[5] WEISMAN R,CHODER M.The fission yeast TOR homolog,tor1+,is required for the response to starvation and other stresses via a conserved serine[J].Journal of Biological Chemistry,2001,276(10):7 027-7 032.
[6] SUNDARAM V,PETKOVA M I,PUJOL-CARRION N,et al.Tor1,Sch9 and PKA downregulation in quiescence rely on Mtl1 to preserve mitochondrial integrity and cell survival[J].Molecular Microbiology,2015,97(1):93-109.
[7] ROHDE J R,CARDENAS M E.Nutrient signaling through TOR kinases controls gene expression and cellular differentiation in fungi[J].Curr Top Microbiol Immunol,2004,279:53-72.
[8] SHAMJI A F,NGHIEM P,SCHREIBER S L.Integration of growth factor and nutrient signaling:Implications for cancer biology[J].Mol Cell,2003,12(2):271-280.
[9] MARTIN D E,HALL M N.The expanding TOR signaling network[J].Current Opinion in Cell Biology,2005,17(2):158-166.
[10] BERSET C,TRACHSEL H,ALTMANN M.The TOR (target of rapamycin) signal transduction pathway regulates the stability of translation initiation factor eIF4G in the yeast Saccharomyces cerevisiae[J].Proc Natl Acad Sci U S A,1998,95(8):4 264-4 269.
[11] LIU Y,LIU N,WU D,et al.The longevity of tor1Δ,sch9Δ,and ras2Δ mutants depends on actin dynamics in Saccharomyces cerevisiae[J].Cell &Bioscience,2015,5(1):1-8.
[12] LAPLANTE M,SABATINI D M.mTOR signaling in growth control and disease[J].Cell,2012,149(2):274-293.
[13] GOROSPE C M,YU S,KANG M,et al.Chronological lifespan regulation of Saccharomyces cerevisiae by leucine biosynthesis pathway genes via TOR1 and COX2 expression regulation[J].Molecular &Cellular Toxicology,2019,15(1):65-73.
[14] BONAWITZ N D,CHATENAY-LAPOINTE M,PAN Y,et al.Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression[J].Cell Metabolism,2007,5(4):265-277.
[15] KIM S W,JOO Y J,CHUN Y J,et al.Cross-talk between Tor1 and Sch9 regulates hyphae-specific genes or ribosomal protein genes in a mutually exclusive manner in Candida albicans[J].Molecular Microbiology,2019,112(3):1 041-1 057.
[16] INOKI K,GUAN K.Complexity of the TOR signaling network[J].Trends in Cell Biology,2006,16(4):206-212.
[17] STAN R,MCLAUGHLIN M M,CAFFERKEY R,et al.Interaction between FKBP12-rapamycin and TOR involves a conserved serine residue[J].Journal of Biological Chemistry,1995,269(51):32 027-32 030.
[18] GIETZ R D,WOODS R A.Yeast transformation by the LiAc/SS carrier DNA/PEG method[J].Methods Mol Biol,2006,313:107-120.
[19] 付肖蒙,肖冬光,郝爱丽,等.GIS1基因对酿酒酵母耐受性的研究[J].中国酿造,2018,37(5):48-53.
FU X M,XIAO D G,HAO A L,et al.Investigation on tolerance of gene GIS1 to Saccharomyces cerevisiae[J].China Brewing,2008,37(5):48-53.
[20] 邢爽,王亚平,郭学武,等.发酵条件对5种产酯酵母酒精发酵和产酯的影响[J].中国酿造,2018,37(2):24-28.
XING S,WANG Y P,GUO X W,et al.Effects of fermentation conditions on ethanol fermentation and ester production of five ester-producing yeasts[J].China Brewing,2008,37(2):24-28.
[21] 杨林娥,彭晓光,杨庆文,等.斐林试剂法测定还原糖方法的改进[J].中国酿造,2010(5):160-161.
YANG L E,PENG X G,YANG Q W,et al.Improvement of the determination of reducing sugar with Fehling′s reagent method[J].China Brewing,2010(5):160-161.
[22] 李潇,董胜胜,付肖蒙,等.转录因子MSN2基因过表达对酿酒酵母耐受性的影响[J].现代食品科技,2018,34(9):95-101.
LI X,DONG S S,FU X M,et al.Investigation on stress tolerance of Saccharomyces cerevisiae of overexpression of transcription factor MSN2 gene[J].Modern Food Science and Technology,2008,34(9):95-101.
[23] 肖冬光,许葵,李瑞青.酒精浓醪发酵生产工艺的优化[J].酿酒科技,2004(6):40-42.
XIAO D G,XU K,LI R Q.The optimization of production conditions of high-gravity alcohol fermentation[J].Liquor-making Science and Technology,2004(6):40-42.
[24] 段钢,许宏贤,钱莹,等.酸性蛋白酶在玉米酒精浓醪发酵上的应用[J].食品与发酵工业,2005(8):34-38.
DUAN G,XU H X,QIAN Y,et al.Application of acid protease for high dry solid alcohol fermentation[J].Food and Fermentation Industries,2005(8):34-38.
[25] 刘代武,彭涛,邬善远,等.玉米酒精浓醪发酵工艺研究[J].酿酒科技,2005(2):87-89.
LIU D W,PENG T,WU S Y,et al.Study on high-concentration mash fermentation technology[J].Liquor-making Science and Technology,2005(2):87-89.
[26] RUSSELL D W,JENSEN R,ZOLLER M J,et al.Structure of the Saccharomyces cerevisiae HO gene and analysis of its upstream regulatory region[J].Mol Cell Biol,1986,6(12):4 281-4 294.
[27] NASMYTH K.Regulating the HO endonuclease in yeast[J].Current Opinion in Genetics &Development,1993,3(2):286-294.
[28] REP M,KRANTZ M,THEVELEIN J M,et al.The transcriptional response of Saccharomyces cerevisiae to osmotic shock.Hot1p and msn2p/msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes[J].Journal of Biological Chemistry,2000,275(12):8 290-8 300.
[29] 董胜胜,李潇,王鹏飞,等.MSN4基因的过表达对酿酒酵母耐受性的影响研究[J].中国酿造,2018,37(10):135-140.
DONG S S,LI X,WANG P F,et al.Effect of overexpression of MSN4 gene on tolerance of Saccharomyces cerevisiae[J].China brewing,2018,37(10):135-140.
[1] 陈敦武, 刘翠翠, 陈雄, 代俊, 王志, 姚鹃, 李沛, 李欣. 不同食品酵母对葡萄糖的流加强度和热激压力的生理响应[J]. 食品与发酵工业, 2021, 47(8): 21-26.
[2] 李泽洋, 伍时华, 龙秀锋, 吴军, 易弋. 米酒生香酵母的分离筛选鉴定及其性能研究[J]. 食品与发酵工业, 2021, 47(7): 43-50.
[3] 熊蝶, 袁岚玉, 李媛媛, 范鹏飞, 冯武. 陕西泡菜中降解亚硝酸盐乳酸菌的筛选及其发酵特性与耐受性研究[J]. 食品与发酵工业, 2021, 47(6): 139-144.
[4] 张倩, 谢正敏, 安明哲, 魏金萍, 叶华夏, 黄箭. 稳定碳同位素判别浓香型白酒的品牌[J]. 食品与发酵工业, 2021, 47(6): 234-240.
[5] 徐成龙, 王珍珍, 余瞻, 王高坚, 冯哲校, 史文超, 沙如意, 毛建卫. 食用植物酵素中酵母菌的分离鉴定及耐受性研究[J]. 食品与发酵工业, 2021, 47(4): 80-86.
[6] 杨新, 陈莉, 杨双全, 卢红梅, 章之柱. 不同培养条件下酿酒酵母菌的转录组差异分析[J]. 食品与发酵工业, 2021, 47(4): 102-109.
[7] 王存堂, 高增明, 张福娟, 朱宏菲, 周庆雯, 孔保华. 洋葱皮乙醇提取物对生鲜猪肉色泽、脂质和蛋白质氧化稳定性的影响[J]. 食品与发酵工业, 2021, 47(3): 87-94.
[8] 盖昱梓, 孙静娴, 黄刚, 金刚. 苹果酸-乳酸发酵细菌乙醇胁迫应答机制研究进展[J]. 食品与发酵工业, 2021, 47(3): 288-293.
[9] 余鸿飞, 姜娇, 董琦楠, 黄蓉, 商华, 叶冬青, 刘延琳. 微孔板筛选酿酒酵母乙醇发酵相关性状的因素探究[J]. 食品与发酵工业, 2021, 47(20): 8-14.
[10] 李莹, 陈延儒, 吴晓江, 邓梦菲, 吴生文, 万茵, 刘成梅, 付桂明. 适应性进化技术选育优良乙醇耐受性能Millerozyma farinosa[J]. 食品与发酵工业, 2021, 47(19): 1-6.
[11] 徐佳, 黄雪芹, 杨建飞, 易媛, 马倩, 胡琨, 左勇. 酿酒酵母中BAT2基因敲除对桑葚酒中高级醇的影响[J]. 食品与发酵工业, 2021, 47(19): 133-139.
[12] 高惠芳, 邵明龙, 张显, 杨套伟, 徐美娟, 高晓冬, 饶志明. 五环三萜酿酒酵母细胞工厂的构建[J]. 食品与发酵工业, 2021, 47(18): 8-14.
[13] 曾令杰, 丰丕雪, 黄锦翔, 安佳星, 赵雪梅, 龙秀锋, 伍时华, 易弋. 基于转录组测序技术的儿茶酚胁迫下酿酒酵母响应机制[J]. 食品与发酵工业, 2021, 47(17): 47-53.
[14] 朱灵桓, 徐沙, 李由然, 张梁, 石贵阳. 酿酒酵母PDC5基因的缺失对2-苯乙醇合成的影响及相关代谢改造[J]. 食品与发酵工业, 2021, 47(16): 22-30.
[15] 朱灵桓, 徐沙, 李由然, 张梁, 石贵阳. 微生物法从头合成2-苯乙醇的研究进展[J]. 食品与发酵工业, 2021, 47(16): 271-277.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn