Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (1): 285-292    DOI: 10.13995/j.cnki.11-1802/ts.024973
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
蛋白界面膜及其评价方法研究进展
卢筠梦, 赵雪, 徐幸莲*
(南京农业大学 食品科学与技术学院,肉品加工与质量控制教育部重点实验室,江苏 南京,210095)
Recent progress in protein interfacial film and its evaluation methods
LU Junmeng, ZHAO Xue, XU Xinglian*
(College of Food Science and Technology,Nanjing Agricultural University,Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China)
下载:  HTML   PDF (1626KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 食品中乳化类产品的稳定性决定了其价值和顾客满意度,天然蛋白的乳化特性多年来受到食品胶体和界面科学领域广泛关注。蛋白吸附到水油界面形成的黏弹性薄膜具有降低界面张力、维持乳液稳定的特性。研究蛋白界面膜的物化性质有助于了解蛋白大分子在水油界面的吸附规律,能够用于评价、表征和预测蛋白乳液稳定性,并为优化蛋白乳液稳定性提供理论基础。基于此,该文对水包油乳液蛋白界面膜结构和影响因素进行探讨,系统综述了目前用于评价蛋白质界面特性的手段和方法,包括微观成像技术、热力学技术、光谱技术和界面流变学技术等,以研究蛋白类乳化液性能在宏观和微观层面的联系,为蛋白质界面膜在乳化食品中的应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢筠梦
赵雪
徐幸莲
关键词:  蛋白界面膜  构象变化  界面流变  微观成像  热力学  光谱技术    
Abstract: The stability of emulsified food products determines its value and customer satisfaction, and emulsifying properties of natural proteins have attracted wide attention in food colloid and interface science for many years.Protein molecules contain both polar and nonpolar groups.The characteristic of amphipathic enables proteins to dispersed in both oil and water phases.Under favorable conditions, proteins in water-oil emulsion can absorb the two-phase interface and organize to form viscoelastic film, which can reduce interfacial tension, resist mechanical force and maintain emulsion stability.Studying the physicochemical properties of the protein interfacial film is helpful to understand the adsorption law of protein macromolecules at the water-oil interface, which can be used to evaluate, characterize and predict the stability of protein emulsion, and provide theoretical support for optimizing the stability of protein emulsion.For these purposes, the structure and influencing factors of protein interfacial film in the oil in water (O/W) emulsion are discussed.The current methods used to study the interfacial properties of proteins were systematically reviewed, including microscopic imaging techniques, thermodynamic methods, spectral techniques and interfacial rheology, in order to understand the relationship between protein-stabilized emulsions properties at a macroscopic and microscopic scale and provide an insight into the application of protein interfacial film in emulsified food.
Key words:  protein interfacial film    conformation change    interfacial rheology    microscope imaging    thermodynamics    spectral technology
收稿日期:  2020-07-07      修回日期:  2020-07-27                发布日期:  2021-02-03      期的出版日期:  2021-01-15
基金资助: 国家自然科学基金项目(31671875);现代农业产业技术体系建设专项(CARS-41)
作者简介:  硕士研究生(徐幸莲教授为通讯作者,E-mail:xlxu@njau.edu.cn)
引用本文:    
卢筠梦,赵雪,徐幸莲. 蛋白界面膜及其评价方法研究进展[J]. 食品与发酵工业, 2021, 47(1): 285-292.
LU Junmeng,ZHAO Xue,XU Xinglian. Recent progress in protein interfacial film and its evaluation methods[J]. Food and Fermentation Industries, 2021, 47(1): 285-292.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.024973  或          http://sf1970.cnif.cn/CN/Y2021/V47/I1/285
[1] LAM R S,NICKERSON M T.Food proteins:A review on their emulsifying properties using a structure-function approach[J].Food Chemistry,2013,141(2):975-984.
[2] MCCLEMENTS D J.Protein-stabilized emulsions[J].Current Opinion in Colloid & Interface Science,2004,9(5):305-313.
[3] DICKINSON E.Flocculation of protein-stabilized oil-in-water emulsions[J].Colloids and Surfaces B:Biointerfaces,2010,81(1):130-140.
[4] BALDURSDOTTIR S G,FULLERTON M S,NIELSEN S H,et al.Adsorption of proteins at the oil/water interface—observation of protein adsorption by interfacial shear stress measurements[J].Colloids and Surfaces B:Biointerfaces,2010,79(1):41-46.
[5] SETIOWATI A D,SAEEDI S,WIJAYA W,et al.Improved heat stability of whey protein isolate stabilized emulsions via dry heat treatment of WPI and low methoxyl pectin:Effect of pectin concentration,pH,and ionic strength[J].Food Hydrocolloids,2017,63:716-726.
[6] DAY L,ZHAI J L,XU M,et al.Conformational changes of globular proteins adsorbed at oil-in-water emulsion interfaces examined by synchrotron radiation circular dichroism[J].Food Hydrocolloids,2014,34:78-87.
[7] ZAIBUDEEN A W,PHILIP J.Adsorption of bovine serum albumin at oil-water interface in the presence of polyelectrolytes and nature of interaction forces[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2019,566:38-47.
[8] ZARE D,ALLISON J R,MCGRATH K M.Molecular dynamics simulation of β-lactoglobulin at different oil/water interfaces[J].Biomacromolecules,2016,17(5):1 572-1 581.
[9] MALDONADO-VALDERRAMA J,WILDE P J,MULHOLLAND F,et al.Protein unfolding at fluid interfaces and its effect on proteolysis in the stomach[J].Soft Matter,2012,8(16):4 402-4 414.
[10] GUO F X,XIONG Y L,QIN F,et al.Surface properties of heat-induced soluble soy protein aggregates of different molecular masses[J].Journal of Food Science,2015,80(2):C279-C287.
[11] DALKAS G,EUSTON S R.Molecular simulation of protein adsorption and conformation at gas-liquid,liquid-liquid and solid-liquid interfaces[J].Current Opinion In Colloid & Interface Science,2019,41:1-10.
[12] BROOKS C L,GRUEBELE M,ONUCHIC J N,et al.Chemical physics of protein folding[J].Proceedings of the National Academy of Sciences,1998,95(19):11 037-11 038.
[13] WANG K Q,SUN D W,PU H B,et al.Principles and applications of spectroscopic techniques for evaluating food protein conformational changes:a review[J].Trends in Food Science & Technology,2017,67:207-19.
[14] DICKINSON E.Hydrocolloids at interfaces and the influence on the properties of dispersed systems[J].Food Hydrocolloids,2003,17(1):25-39.
[15] TANG C H.Globular proteins as soft particles for stabilizing emulsions:concepts and strategies[J].Food Hydrocolloids,2020,103:105664.
[16] TANG C H,SHEN L.Dynamic adsorption and dilatational properties of BSA at oil/water interface:role of conformational flexibility[J].Food Hydrocolloids,2015,43(1):388-399.
[17] MCCLEMENTS D J.Food emulsions:principles,practices,and techniques[M].3rd ed.New York:CRC press,2015.
[18] HUNTER R J.Foundations of colloid science[M].2nd ed.USA:Oxford University Press,2001.
[19] OZTURK B,ARGIN S,OZILGEN M,et al.Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers:Whey protein isolate and gum arabic[J].Food Chemistry,2015,188:256-263.
[20] ZHAI J L,WOOSTER T J,HOFFMANN S V,et al.Structural rearrangement of β-lactoglobulin at different oil-water interfaces and its effect on emulsion stability[J].Langmuir,2011,27(15):9 227-36.
[21] 邓思杨,王博,李海静,等.冻融次数对镜鲤鱼肌原纤维蛋白功能和结构特性变化的影响[J].食品科学,2019,40(11):95-101.
DENG S Y,WANG B,LI H J,et al.Effect of freeze-thaw cycles on changes in functional and structural properties of myofibrillar protein from mirror carp (Cyprinus carpio var.specularis)[J].Food Science,2019,40(11):95-101.
[22] TOKLE T,MCCLEMENTS D J.Physicochemical properties of lactoferrin stabilized oil-in-water emulsions:Effects of pH,salt and heating[J].Food Hydrocolloids,2011,25(5):976-982.
[23] PLUCKNETT K P,Pomfret S J,NORMAND V,et al.Dynamic experimentation on the confocal laser scanning microscope:application to soft-solid,composite food materials[J].J Microsc,2001,201(2):279-290.
[24] LIU F G,WANG D,MA C C,et al.Conjugation of polyphenols prevents lactoferrin from thermal aggregation at neutral pH[J].Food Hydrocolloids,2016,58:49-59.
[25] 李伟伟. 高乳化性大豆蛋白的制备及其界面流变性质的研究[D].无锡:江南大学,2017.
LI W W.Preparation of high-emulsifying soy protein and study on the interfacial shear rheology [D].Wuxi:Jiangnan University,2017.
[26] 黄颖, 高志明,吴彬娴,等.β-乳球蛋白纤维化过程中的界面及乳化性质[J].食品科学,2018,39(6):20-25.
HUANG Y,GAO Z M,WU B X,et al.Changes in interfacial and emulsifying properties of β-lactoglobulin protein during its fibrillation[J].Food Science,2018,39(6):20-25.
[27] MA W C,WANG J M,WU D,et al.Physicochemical properties and oil/water interfacial adsorption behavior of cod proteins as affected by high-pressure homogenization[J].Food Hydrocolloids,2020,100:105 429.
[28] 叶晶. 蛋白质聚集体在油-水界面的微观流变学研究[D].武汉:湖北工业大学,2019.
YE J.Microrheology of protein aggregates at oil-water interface [D].Wuhan:Hubei University of Technology,2019.
[29] HE X H,LIU H Z,LIU L,et al.Effects of high pressure on the physicochemical and functional properties of peanut protein isolates[J].Food Hydrocolloids,2014,36:123-129.
[30] CORREDIG M,DALGLEISH D G.A differential microcalorimetric study of whey proteins and their behaviour in oil-in-water emulsions[J].Colloids and Surfaces B:Biointerfaces,1995,4(6):411-22.
[31] 蔡汝莹. 界面蛋白互作及乳液粒径对鸡胸肉肌原纤维蛋白热凝胶性能的影响[D].南京:南京农业大学,2019.
CAI R Y.Effect of interaction betweeninterfacial proteins and size ofemulsions on properties of myofibrillarprotein of the chicken chest meatheat-induced gels [D].Nanjing:Nanjing Agricultural University,2019.
[32] WANG J Y,YANG Y L,TANG X Z,et al.Effects of pulsed ultrasound on rheological and structural properties of chicken myofibrillar protein[J].Ultrasonics Sonochemistry,2017,38:225-233.
[33] KEERATIURAI M,MIRIANI M,IAMETTI S,et al.Structural changes of soy proteins at the oil-water interface studied by fluorescence spectroscopy[J].Colloids and Surfaces B:Biointerfaces,2012,93:41-48.
[34] GUO Y L,HUANG W C,WU Y F,et al.Conformational changes of proteins and oil molecules in fish oil/water interfaces of fish oil-in-water emulsions stabilized by bovine serum albumin[J].Food Chemistry,2019,274:402-406.
[35] SCHWAIGHOFER A,ALCARAZ M R,LUX L,et al.pH titration of β-lactoglobulin monitored by laser-based Mid-IR transmission spectroscopy coupled to chemometric analysis[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2020,226:117 636.
[36] ALCAR Z M R,SCHWAIGHOFER A,GOICOECHEA H,et al.Application of MCR-ALS to reveal intermediate conformations in the thermally induced α-β transition of poly-L-lysine monitored by FTIR spectroscopy[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2017,185:304-309.
[37] FANG Y,DALGLEISH D G.Conformation of β-lactoglobulin studied by FTIR:Effect of pH,temperature,and adsorption to the oil-water interface[J].Journal of Colloid and Interface Science,1997,196(2):292-298.
[38] LEFVRE T,SUBIRADE M.Formation of intermolecular β-sheet structures:a phenomenon relevant to protein film structure at oil-water interfaces of emulsions[J].Journal of Colloid and Interface Science,2003,263(1):59-67.
[39] SAKUNO M M,MATSUMOTO S,KAWAI S,et al.Adsorption and structural change of beta-lactoglobulin at the diacylglycerol-water interface[J].Langmuir:the ACS Journal of Surfaces and Colloids,2008,24(20):11 483-11 488.
[40] SCHESTKOWA H,DRUSCH S,WAGEMANS A M.FTIR analysis of β-lactoglobulin at the oil/water-interface[J].Food Chemistry,2020,302:125 349.
[41] KOBAYASHI Y,MAYER S G,PARK J W.FTIR and Raman spectroscopies determine structural changes of tilapia fish protein isolate and surimi under different comminution conditions[J].Food Chemistry,2017,226:156-164.
[42] ZHUANG X B,JIANG X P,ZHOU H Y,et al.Insight into the mechanism of physicochemical influence by three polysaccharides on myofibrillar protein gelation[J].Carbohydrate Polymers,2020,229:115 449.
[43] WANG S N,YANG J J,SHAO G Q,et al.pH-induced conformational changes and interfacial dilatational rheology of soy protein isolated/soy hull polysaccharide complex and its effects on emulsion stabilization[J].Food Hydrocolloids,2020:106 075.
[44] DEVLIN M T,LEVIN I W.Acyl chain packing properties of deuterated lipid bilayer dispersions:Vibrational raman spectral parameters[J].Journal of Raman Spectroscopy,1990,21(7):441-451.
[45] NIU F G,NIU D B,ZHANG H J,et al.Ovalbumin/gum arabic-stabilized emulsion:rheology,emulsion characteristics,and raman spectroscopic study[J].Food Hydrocolloids,2016,52:607-614.
[46] LUCASSEN-REYNDERS E H,BENJAMINS J,FAINERMAN V B.Dilational rheology of protein films adsorbed at fluid interfaces[J].Current Opinion in Colloid & Interface Science,2010,15(4):264-70.
[47] YANG J L,YU K,TSUJI T,et al.Determining the surface dilational rheology of surfactant and protein films with a droplet waveform generator[J].Journal of Colloid and Interface Science,2019,537:547-553.
[48] GUZMÁN N E,TAJUELO J,PASTOR J M,et al.Shear rheology of fluid interfaces:closing the gap between macro-and micro-rheology[J].Current Opinion in Colloid & Interface Science,2018,37:33-48.
[49] ZHU Q M,WANG C,KHALID N,et al.Effect of protein molecules and MgCl2 in the water phase on the dilational rheology of polyglycerol polyricinoleate molecules adsorbed at the soy oil-water interface[J].Food Hydrocolloids,2017,73:194-202.
[50] ULAGANATHAN V,BERGENSTAHL B,KR GEL J,et al.Adsorption and shear rheology of β-lactoglobulin/SDS mixtures at water/hexane and water/MCT interfaces[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2012,413:136-141.
[51] 吴磊燕. 玉米醇溶蛋白改性、界面特性及成膜性研究[D].广州:华南理工大学,2010.
WU L Y.Study on modification,surface properties and film forming properties of zein [D].Guangzhou:South China University of Technology,2010.
[1] 王秋玉, 朱文政, 薛盼盼, 沙文轩, 苏嘉敏, 章海风, 周晓燕. 冻融循环对预醒发冷冻豆沙包品质的影响[J]. 食品与发酵工业, 2021, 47(9): 215-222.
[2] 周亨乐, 王富海, 易俊洁, 程冯云, 袁蕾, 牛慧慧, 周林燕. 化学抑制剂对果蔬食品多酚氧化酶性质影响的研究进展[J]. 食品与发酵工业, 2021, 47(4): 253-260.
[3] 朱敏, 孙婷, 白直真, 罗惠波, 田建平, 黄丹. 基于可见光/近红外高光谱技术的窖泥总酸的分布[J]. 食品与发酵工业, 2020, 46(8): 111-117.
[4] 文鹏程, 焦瑶瑶, 张卫兵, 杨敏, 张炎, 朱妍丽, 马瑞娟. 茶多酚对牛奶蛋白结构的影响[J]. 食品与发酵工业, 2020, 46(8): 40-47.
[5] 王容, 赵良忠, 莫鑫, 庾坤, 车丽娜, 刘婷. 米酸汤发酵工艺优化及贮存稳定性预测模型[J]. 食品与发酵工业, 2020, 46(6): 191-198.
[6] 张颖, 王宇翔, 张锦锦, 高益增, 曹炜. 大孔树脂对蜂蜜中羟甲基糠醛的脱除热力学及动力学研究[J]. 食品与发酵工业, 2020, 46(5): 98-103.
[7] 李庆舒, 程琳, 邓红, 张忠, 袁莉. 三种多酚与牛血清蛋白相互作用的初步研究[J]. 食品与发酵工业, 2020, 46(3): 180-187.
[8] 晏俊玲, 樊扬, 秦川, 欧雪, 陈姝娟, 敖晓琳. 苦竹笋总黄酮大孔树脂纯化工艺及其体外抗炎活性研究[J]. 食品与发酵工业, 2020, 46(23): 184-192.
[9] 楼乐燕, 岳阳, 尹培, 陈健初, 叶兴乾, 刘东红. 单宁酸和绿原酸对杨梅花色苷的辅色作用[J]. 食品与发酵工业, 2019, 45(4): 74-80.
[10] 马兴灶, 连海山, 吕莹, 郑丹娜. 干制“储良”龙眼吸附等温线与热力学特性研究[J]. 食品与发酵工业, 2019, 45(19): 98-103.
[11] 张鹏, 陈帅帅, 李江阔, 李博强, 徐勇. 采用近红外光谱进行采后苹果品种及货架期定性判别[J]. 食品与发酵工业, 2019, 45(19): 200-205.
[12] 郑丹 , 张清峰. 黄酮“落新妇苷”与牛血清白蛋白相互作用研究[J]. 食品与发酵工业, 2018, 44(6): 83-87.
[13] 王瑞颖 , 赵亚 , 石启龙. 干燥方式对桑葚粉热力学特性与贮藏稳定性影响#br#[J]. 食品与发酵工业, 2018, 44(2): 247-.
[14] 孙丽洁,张晖,王立,钱海峰,齐希光. 鱼皮抗冻多肽的制备及其对冷冻面团热力学性质的影响[J]. 食品与发酵工业, 2017, 43(7): 87-.
[15] 贾柳君,张海红,王健,李宗朋,李子文,熊雅婷,李冬冬. 采用近红外光谱定量分析葡萄酒发酵液中总酸含量和pH值[J]. 食品与发酵工业, 2017, 43(2): 191-.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn