Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (3): 18-24    DOI: 10.13995/j.cnki.11-1802/ts.025002
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
近平滑假丝酵母ATCC 7330羰基还原酶CpCR的表达及酶学性质研究
宋婷1,2, 王帅静1,2, 汪沉1,2, 吕育财1,2, 罗华军1,2, 郭金玲1,2, 龚大春1,2*
1(中国轻工业功能酵母重点实验室(三峡大学),湖北 宜昌,443002)
2(三峡大学 生物与制药学院,湖北 宜昌,443002)
Expression and characterization of carbonyl reductase CpCR from Candida parapsilosis ATCC 7330
SONG Ting1,2, WANG Shuaijing1,2, WANG Chen1,2, LYU Yucai1,2, LUO Huajun1,2, GUO Jingling1,2, GONG Dachun1,2*
1(China Key Laboratory of Light Industry Functional Yeast, China Three Gorges University, Yichang 443002, China)
2(College of Biological and Pharmaceutical, China Three Gorges University, Yichang 443002, China)
下载:  HTML   PDF (4712KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过构建重组菌Escherichia coli BL21(DE3)/ pACYC Duet-1-cpcr,表达带有His标签的近平滑假丝酵母 Candida parapsilosis ATCC 7330羰基还原酶CpCR基因,并采用Ni-Agarose亲和层析对重组酶CpCR进行分离纯化和酶学性质研究。重组酶CpCR的基因序列全长 1 107 bp,含有368 个氨基酸,分子质量在 41 kDa 左右,比酶活力为 20 U/mg;该酶在4~33 ℃的温度范围稳定性较好,相对酶活力在80%以上,T50值为37 ℃;该酶的pH适宜范围在6.2~7.5,在中性条件下稳定性最好;Cu2+对该酶有强烈的抑制作用,在1 mmol/L条件下,相对酶活力下降30%,在5 mmol/L条件下,相对酶活下降50%;该酶对底物苯甲醛、正丁醛亲和能力强于4-氯-3-酮基-丁酸乙酯(4-chlor-3-keto-butyrate-ethyl ester,COBE),对苯甲醛或正丁醛的催化效率是对COBE的20倍左右;该酶是一种NADPH依赖型的羰基还原酶。本研究为羰基还原酶CpCR分子改造和催化应用提供了重要的基础数据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋婷
王帅静
汪沉
吕育财
罗华军
郭金玲
龚大春
关键词:  近平滑假丝酵母  羰基还原酶CpCR  重组表达  酶学性质    
Abstract: Carbonyl reductases from Candida parapsilosis are valuable to the synthesis of hydroxyl compounds. By constructing recombinant E. coli BL21 (DE3)/pACYCDuet-1-cpcr, the carbonyl reductase CpCR gene (cpcr) from C. parapsilosis. ATCC 7330 was expressed. The recombinant CpCR was separated and purified by Ni-Agarose affinity chromatography from His-tag on the pACYCDuet-1 and its enzymatic properties were investigated. The results showed that the full length of the carbonyl reductase gene cpcr was 1 107 bp,containing 368 amino acids with molecular weight around 41 kDa and specific enzyme activity of 20 U/mg. The recombinant CpCR was stable in the temperature range of 4-33 ℃ with the relative enzyme activity above 80%, and the T50 value was 37 ℃. The suitable pH range was 6.2-7.5, and optimal stability was obtained under neutral conditions. Cu2+ had a strong inhibition on the recombinant CpCR, and lowered the relative enzyme activity by 30% at 1 mmol/L, and by 50% at a 5 mmol/L. The affinity of the enzyme to benzaldehyde and n-butyraldehyde was stronger than that to 4-chlor-3-keto- butyrate-ethyl ester (COBE). The catalytic efficiency for benzaldehyde or n-butyraldehyde was about 20 times of that for COBE. The recombinant CpCR was an NADPH-dependent carbonyl reductase. This study provided basic data for the molecular modification and catalytic application of carbonyl reductase CpCR.
Key words:  Candida parapsilosis    carbonyl reductase CpCR    recombinant expression    enzymatic properties
收稿日期:  2020-07-09      修回日期:  2020-07-31           出版日期:  2021-02-15      发布日期:  2021-03-08      期的出版日期:  2021-02-15
基金资助: 国家自然基金项目(21776162);湖北省技术创新专项项目(2019ABA114)
作者简介:  硕士研究生(龚大春教授为通讯作者,E-mail:185195061@qq.com)
引用本文:    
宋婷,王帅静,汪沉,等. 近平滑假丝酵母ATCC 7330羰基还原酶CpCR的表达及酶学性质研究[J]. 食品与发酵工业, 2021, 47(3): 18-24.
SONG Ting,WANG Shuaijing,WANG Chen,et al. Expression and characterization of carbonyl reductase CpCR from Candida parapsilosis ATCC 7330[J]. Food and Fermentation Industries, 2021, 47(3): 18-24.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025002  或          http://sf1970.cnif.cn/CN/Y2021/V47/I3/18
[1] CHADHA A,VENKATARAMAN S,et al.Candida parapsilosis:A versatile biocatalyst for organic oxidation-reduction reactions[J].Bioorganic Chemistry,2016,68(10):187-213.
[2] QIN H M,TANOKURA M,MIYAKAWA T,et al.Crystal structure of conjugated polyketone reductase (CPR-C1) from Candida parapsilosis IFO 0708 complexed with NADPH[J].Proteins,2013,81(11):2 059-2 063.
[3] WANG Q Y,SHEN L H,YE T T,et al.Overexpression and characterization of a novel (S)-specific extended short-chain dehydrogenase/reductase from Candida parapsilosis[ J].Bioresource Technology,2012,123(7):690-694.
[4] ZHANG RZ,WANG L,XU Y,et al.In situ expression of (R)-carbonyl reductase rebalancing an asymmetric pathway improves stereoconversion efficiency of racemic mixture to (S)-phenyl-1,2-ethanediol in Candida parapsilosis CCTCC M203011[J].Microbial Cell Factories,2016,15:143-153.
[5] 许娜,王海燕,徐岩,等.近平滑假丝酵母 (R)-专一性羰基还原酶基因的克隆与表达[J].微生物学通报,2006,33(4):112-114.
XU N,WANG H Y XU Y,et al.Cloning and expression of gene encoding (R)-specific carbonyl reductase from Candida parapsilosis CCTCC M203011 in Escherichia coli[J].Microbiology China,2006,33(4):112-114.
[6] AGGARWAL N,MANDAL P K,GAUTHAM N,et al.Expression,purification,crystallization and preliminary X-ray diffraction analysis of carbonyl reductase from Candida parapsilosis ATCC 7330[J].ActaCrystallographica Section F-Structural Biology Communications,2013,69(2):313-315.
[7] BASKAR B,PANDIAN N G,PRIYA K,et al.Deracemisation of aryl substituted a-hydroxy esters using Candida parapsilosis ATCC 7330:Effect of substrate structure and mechanism[J].Tetrahedron,2005,61(52):12 296-12 306.
[8] STELLA S,CHADHA A.Biocatalytic reduction of α-keto amides to (R)-hydroxy amides using Candida parapsilosis ATCC 7330[J].Catalysis Today,2012,198(1):345-352.
[9] YAMAMOTO H,KAWADA N,MATSUYAMA A,et al.Cloning and expression in Escherichia coli of a gene coding for a secondary alcohol dehydrogenase from Candida parapsilosis[J].Bioscience,Biotechnology,and Biochemistry,1999,63(6):1 051-1 055.
[10] LI Z,WU Q Q,ZHU D M,et al.Highly enantioselective double reduction of phenylglyoxal to (R)-1-phenyl-1,2-ethanediol by one NADPH-dependent yeast carbonyl reductase with a broad substrate profile[J].Tetrahedron,2013,69:3 561-3 564.
[11] 聂尧,徐岩.羰基还原酶及其催化不对称合成大基团手性羟基类化合物的研究进展[J].中国科学:生命科学,2019,49(5):595-604.
NIE Y,XU Y.Stereoselective carbonyl reductases and their roles in asymmetric synthesis of bulky chiral hydroxyl compounds[J].Scientia Sinica Vitae,2019,49(5):595-604.
[12] 倪国伟,汤佳伟,邹杰,等.羰基还原酶在动态动力学拆分中的应用进展[J].有机化学,2019,39(2):339-349.
NI G W,TANG J W,ZOU J,et al.Recent advances on carbonyl reductases for dynamic kinetic resolution[J].Chinese Journal of Organic Chemistry,2019,39(2):339-349.
[13] LIU Z Q,DONG S C,YIN H H,et al.Enzymatic synthesis of an ezetimibe intermediate using carbonyl reductase coupled with glucose dehydrogenase in an aqueous-organic solvent system[J].Bioresource Thchnology,2017,229(1):26-32.
[14] 聂尧,徐岩,王海燕,等.重组大肠杆菌不对称还原2-羟基苯乙酮合成(R)-苯基乙二醇[J].化工进展,2006,25(10):1 231-1 236.
NIE Y,XU Y,WANG H Y,et al.Synthesis of (R)-1-phenyl-1,2-ethanediol by stereospecific reduction of 2-hydroxy acetophenone using recombinant Escherichia coli expressing (R)-specific carbonyl reductase[J].Chemical Industry and Engineering Progress,2006,25(10):1 231-1 236.
[15] NING C X,SU E Z,TIANA Y J,et al.Combined cross-linked enzyme aggregates (combi-CLEAs) for efficient integration of a ketoreductase and a cofactor regeneration system[J].Journal of Biotechnology,2014,184(5):7-10.
[16] 张志斌,吴小芳,杨慧林,等.羰基还原酶工程菌构建及其应用于还原制备S-CHBE[J].食品与发酵工业,2013,39(12):24-29.
ZHANG Z B,WU X F,YANG H L,et al.Construction of recombinant strain with carbonyl reductase gene for production of ethyl S-4-chloro-3-hydroxybutanoate[J].Food and Fermentation Industries,2013,39(12):24-29.
[17] WEI P,GAO J X,LOU W Y,et al.Engineering of a novel carbonyl reductase with coenzyme regeneration in E.coli for efficient biosynthesis of enantiopure chiralalcohols[J].Journal of Biotechnology,2016,230(3):54-62.
[18] 薛芳,李红梅,黄艳青,等.响应面满意度函数优化产羰基还原酶工程菌发酵条件[J].食品与发酵工业,2015,41(2):107-114.
XUE F,LI H M,HUANG Y Q,et al.Optimization of carbonyl reductase production by recombinant Escherichia coli using response surface methodology coupled with desirability function[ J ].Food and Fermentation Industries,2015,41(2):107-114.
[19] 王亚军,吴配配,罗希,等.E.coli BL21(DE3)/pET28a(+)-cr羰基还原酶分离纯化及酶学性质研究[J].高校化学工程学报,2015,29(3):607-615.
WANG Y J,WU P P,et al.Purification and enzymatic characterization of E.coli BL21 (DE3)/pET28a(+)-cr carbonyl reductase[J].Journal of Chemical Engineering of Chinese Universities,2015,29(3):607-615.
[20] 聂尧,徐岩.生物催化立体选择性氧化还原中存在问题及其发展策略[J].生物加工过程,2008,6(2):1-9.
NIE Y,XU Y.Biocatalytic systems for stereoselective oxidoreduction existing limitations and development strategies[J].Chinese Joumal of Bioprocess Engineering,2008,6(2):1-9.
[21] 欧玲,谢谚,许建和.还原酶催化羰基不对称还原的应用进展[J].生物加工过程,2011,9(2):72-78.
OU L,XIE Y,XU J H.Advances in application of reductases in carbonyl asymmetric reduction[J].Chinese Journal of Bioprocess Engineering,2011,9(2):72-78.
[22] SUDAKARA S,CHADHA A.A carbonyl reductase from Candida parapsilosis ATCC 7330:Substrate selectivity and enantiospecificity[J].Organic and Biomolecular Chemistry,2017,15(4):4 165-4 171.
[23] KARANAM V K,CHAUDHURY D,CHADHA A.Understanding (R) specific carbonyl reductase from Candida parapsilosis ATCC 7330[CpCR]:Substrate scope,kinetic studies and the role of zinc[J].Catalysts 2019,9(8):702-712.
[24] AGGARWA N,ANANTHATHAMULA R,KARANAM V K,et al.Understanding substrate specificity and enantioselectivity of carbonyl reductase from Candida parapsilosis ATCC 7330 (CpCR):Experimental and modeling studies[J].Molecular Catalysis,2018,460(11):40-45.
[25] 王伟,刘云,余华顺,戴秋红,等.近平滑假丝酵母ATCC 7330中羰基还原酶双水相萃取工艺研究[J].化学与生物工程,2020,37(1):8-12.
WANG W,LIU Y,YU H S,et al.Aqeous two-phase extraction process of carbonyl reductase in Candida parapsilosis ATCC 7330[J].Chemistry & Bioengineering,2020,37(1):8-12.
[26] 王伟,杨锟,梅子龙,等.近平滑假丝酵母ATCC7330均质破碎工艺研究[J].农产品加工,2019,48(9):33-35.
WANG W,YANG K,MEI Z L,et al.Study on the breaking process of Candida parapsilosis ATCC 7330[J].Farm Products Processing,2019,48(9):33-35.
[27] 罗华军,刘云,王亚宁,邱勇,余华顺,戴秋红,姚鹃,龚大春.近平滑假丝酵母ATCC 7330的生长条件优化[J].化学与生物工程,2019,36(2):12-16.
LUO H J,LIU Y,WANG Y N,et al.Optimization in growth conditions of Candida parapsilosis ATCC 7330[J].Chemistry & Bioengineering,2019,36(2):12-16.
[28] 应国清,杨岳微,梅建凤,等.马克斯克鲁维酵母羰基还原酶基因的克隆与表达[J].微生物学通报,2013,40(8):1 393-1 402.
YING G Q,YANG Y W,MEI J F,et al.Cloning and expression of Kluyveromyce marxianus gene encoding carbonyl reductase in Escherichia coli[J].Microbiology China,2013,40(8):1 393-1 402.
[1] 陶大炜, 宁喜斌. 产α-环糊精葡萄糖基转移酶的菌株筛选、鉴定与酶学性质的初步研究[J]. 食品与发酵工业, 2021, 47(6): 145-151.
[2] 杨胜远, 林谦, 刘淑敏, 苏巧云, 黄慧玲. 屎肠球菌源谷氨酸脱羧酶的制备及其酶学性质研究[J]. 食品与发酵工业, 2021, 47(5): 28-34.
[3] 于洁, 徐勤茜, 李子院, 刘红艳, 郝再彬, 李海云. 虎杖内生真菌Aspergillus aculeatus HZ001产β-葡萄糖苷酶的酶学特性[J]. 食品与发酵工业, 2021, 47(3): 31-35.
[4] 包怡, 胡友明, 朱林江, 陆跃乐, 陈小龙. 己糖氧化酶的研究进展[J]. 食品与发酵工业, 2021, 47(3): 218-223.
[5] 李静竹, 胡梦君, 张建华. 蛋白质谷氨酰胺酶的重组表达与发酵条件优化[J]. 食品与发酵工业, 2021, 47(3): 294-301.
[6] 冯林雪, 陈洲, 王亚森, 冯康, 许向阳, 李子杰, 中西秀树, 高晓冬. 福氏志贺菌来源L-鼠李树胶糖激酶的克隆表达及酶学性质分析[J]. 食品与发酵工业, 2021, 47(20): 1-7.
[7] 郑文慧, 刘佳伟, 刘子铭, 周哲敏, 刘中美. 埃及伊蚊来源半胱亚磺酸脱羧酶的性质解析[J]. 食品与发酵工业, 2021, 47(18): 30-36.
[8] 祖航天, 田小鹏, 胡杰, 张皓, 丁延帅, 吕明生, 王淑军. 产右旋糖酐酶Pseudarthrobacter sp.RN22的筛选、鉴定及酶学性质研究[J]. 食品与发酵工业, 2021, 47(17): 76-83.
[9] 程青丽, 李国明, 赵晓涵, 冯晓文, 卢知浩, 谷瑞增, 鲁军, 刘文颖. 牡蛎过敏原肌浆钙结合蛋白的分离纯化和鉴定[J]. 食品与发酵工业, 2021, 47(16): 15-21.
[10] 诸亚锋, 徐铮. 来源于Dictyoglomus sp.NZ13-RE01的纤维二糖差向异构酶酶学性质和乳果糖制备研究[J]. 食品与发酵工业, 2021, 47(13): 9-15.
[11] 周艳杰, 耿鹏, 时祎, 顾正华, 辛瑜, 石贵阳, 张梁. 嗜热玫瑰红球菌嗜热脂肪酶的重组表达与酶学性质研究[J]. 食品与发酵工业, 2021, 47(13): 16-22.
[12] 刘畅, 马现永, 马三梅, 邓盾. 降解黄曲霉毒素B1的乳酸片球菌重组多铜氧化酶学性质[J]. 食品与发酵工业, 2021, 47(13): 72-78.
[13] 马银凤, 申培立, 王彩喆, 牛丹丹, 田康明, 王正祥. 中温α-淀粉酶的分子进化及酶学性质[J]. 食品与发酵工业, 2021, 47(11): 14-18.
[14] 李洁媛, 李东, 童凯, 雷雨, 姜斌, 唐璇, 李亚兰. 马铃薯多酚氧化酶的分离纯化、酶学性质及酶促合成茶黄素性能研究[J]. 食品与发酵工业, 2021, 47(11): 26-31.
[15] 魏万涛, 李梦丽, 江波, 张涛. L-岩藻糖激酶/GDP-L-岩藻糖焦磷酸化酶的克隆表达及酶学性质研究[J]. 食品与发酵工业, 2020, 46(9): 18-24.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn