Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (1): 97-106    DOI: 10.13995/j.cnki.11-1802/ts.025020
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
超声波预处理对玉米醇溶蛋白结构及其Pickering乳液稳定性的影响
孙烨, 李英浩, WULANDARI, 吕丽爽, 张秋婷*
(南京师范大学 食品与制药工程学院,江苏 南京,210000)
Ultrasonic pretreatment improves the stability of zein and Pickering emulsion
SUN Ye, LI Yinghao, WULANDARI, LYU Lishuang, ZHANG Qiuting*
(School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210000, China)
下载:  HTML   PDF (9061KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究超声波预处理在反溶剂法制备玉米醇溶纳米颗粒(zein nanoparticle,ZNP)过程中的作用,并将ZNP通过静电作用与亚麻籽胶(flaxseed gum,FSG)结合形成复合颗粒,探究其对Pickering乳液稳定性的影响,对不同超声波处理条件对ZNP的内源荧光性、二级结构、粒径和电位的影响进行分析。结果表明,超声波预处理玉米醇溶蛋白的乙醇水溶液,可以显著降低ZNP的平均粒径,并提高ZNP的电位绝对值。在较低超声功率密度(230 W/cm2)下,粒径随着处理时间延长而进一步减少,电位绝对值增加,即稳定性提升。但当超声功率密度增加至460 W/cm2时,ZNP的粒径开始缓慢增大,电位绝对值降低。将经超声波预处理的ZNP与FSG按质量比1∶1均质混合,通过表面疏水性分析发现:由超声波预处理的ZNP可以与更多的FSG结合,提高亲水性,分析其原因可能是ZNP表面电位升高,促进了更多FSG结合在ZNP的表面,有效地抵御乳液中液滴的聚集及破裂。通过对热稳定性的研究发现,超声波预处理可以显著提升Pickering乳液的稳定性。该研究结果可为超声波预处理在ZNP及Pickering乳液制备过程中的应用提供一定的基础依据,并为制备更高效、热稳定的Pickering粒子提供一种新型绿色的途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙烨
李英浩
WULANDARI
吕丽爽
张秋婷
关键词:  超声波  玉米醇溶蛋白  亚麻籽胶  Pickering乳液    
Abstract: In order to explore the roles of ultrasonic pretreatment in the preparation of zein nanoparticles (ZNP) by anti-solvent method, the formation of composite particles by ZNP and flaxseed gum (FSG), and the impact on the stability of the Pickering emulsion, the intrinsic fluorescence, secondary structure, particle size and potential of ZNP were analyzed.The results show that ultrasonic pretreatment of zein ethanol solution can significantly reduce the average particle size of ZNP and increase the absolute value of ZNP potential.It was also found that the particle size of ZNP further decreased with the increasing ultrasound time at lower ultrasonic power density (230 W/cm2), the absolute value of the potential increased, that is, the stability increased.However, when the ultrasonic power density up to 460 W/cm2, the particle size of ZNP increased slowly, and the absolute value of potential decreased.Then, ZNP pretreated by ultrasound were mixed with FSG by mass ratio of 1∶1, which stated ultrasound treatment make ZNP combine more FSG by surface hydrophilicity analysis.The surface potential of the ZNP was increased, which promoted more FSG to bind to the surface of the ZNP, resisting the aggregation and breakage of droplets in the emulsion.At the same time, through the study of thermal stability, it was confirmed that ultrasonic pretreatment can significantly improve the stability of Pickering emulsion.Therefore, the results of this study can provide a certain basis for the application of ultrasonic pretreatment in the preparation of ZNP and Pickering emulsion, and provide a new green way for the preparation of Pickering particles with higher efficiency and thermal stability.
Key words:  ultrasound    zein    flaxseed gum    pickering emulsion
收稿日期:  2020-07-14      修回日期:  2020-07-27                发布日期:  2021-02-03      期的出版日期:  2021-01-15
基金资助: 国家自然科学基金青年科学基金项目(31701608);江苏省高等学校自然科学研究面上项目(17KJD550002)
作者简介:  硕士研究生(张秋婷副教授为通讯作者,E-mail: qiuting.zhang@njnu.edu.cn)
引用本文:    
孙烨,李英浩,WULANDARI,等. 超声波预处理对玉米醇溶蛋白结构及其Pickering乳液稳定性的影响[J]. 食品与发酵工业, 2021, 47(1): 97-106.
SUN Ye,LI Yinghao,WULANDARI,et al. Ultrasonic pretreatment improves the stability of zein and Pickering emulsion[J]. Food and Fermentation Industries, 2021, 47(1): 97-106.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025020  或          http://sf1970.cnif.cn/CN/Y2021/V47/I1/97
[1] REDDY N,YANG Y Q.Potential of plant proteins for medical applications[J].Trends in Biotechnology,2011,29(10):490-498.
[2] EVANS C D,MANLEY R H.Ternary solvents for zein[J].Industrial and Engineering Chemistry Research,1944,36(5):408-410.
[3] KASAAI M R.Zein and zein-based nano-materials for food and nutrition applications:A review[J].Trends in Food Science and Technology,2018,79:184-197.
[4] DE FOLTER J W J,VAN RUIJVEN M W M,VELIKOV K P.Oil-in-water pickering emulsions stabilized by colloidal particles from the water-insoluble protein zein[J].Soft Matter,2012,8(25):6 807-6 815.
[5] WU W,KONG X,ZHANG C,et al.Improving the stability of wheat gliadin nanoparticles-effect of gum arabic addition[J].Food Hydrocolloids,2018,80:78-87.
[6] FU D W,DENG S M,MCCLEMENTS D J,et al.Encapsulation of β-carotene in wheat gluten nanoparticle-xanthan gum-stabilized pickering emulsions:Enhancement of carotenoid stability and bioaccessibility[J].Food Hydrocolloids,2019,89:80-89.
[7] JIANG Y,WANG D,LI F,et al.Cinnamon essential oil pickering emulsion stabilized by zein-pectin composite nanoparticles:characterization,antimicrobial effect and advantages in storage application[J].International Journal of Biological Macromolecules,2020,148:1 280-1 289.
[8] LUO J M,LI Y T,MAI Y S,et al.Flaxseed gum reduces body weight by regulating gut microbiota[J].Journal of Functional Foods,2018,47:321-341.
[9] 陈海华. 亚麻籽胶的功能性质、结构及其应用[D].无锡:江南大学,2005.
CHEN H H.Functional properties,structure and application of flaxseed gum[D].Wuxi:Jiangnan University,2005.
[10] PHAM L B,WANG B,ZISU B,et al.Microencapsulation of flaxseed oil using polyphenol-adducted flaxseed protein isolate-flaxseed gum complex coacervates[J].Food Hydrocolloids,2020,107:105 944.
[11] O’SULLIVAN J,MURRAY B,FLYNN C,et al.The effect of ultrasound treatment on the structural,physical and emulsifying properties of animal and vegetable proteins[J].Food Hydrocolloids,2016,53:141-154.
[12] SUN Y J,CHEN J H,ZHANG S W,et al.Effect of power ultrasound pre-treatment on the physical and functional properties of reconstituted milk protein concentrate[J].Journal of Food Engineering,2014,124(4):11-18.
[13] GÜLSEREN í,GÜZEY D,BRUCE B D,et al.Structural and functional changes in ultrasonicated bovine serum albumin solutions[J].Ultrasonics Sonochemistry,2007,14(2):173-183.
[14] JIANG Y,ZHANG C,YUAN J H,et al.Effects of pectin polydispersity on zein/pectin composite nanoparticles (zaps) as high internal-phase pickering emulsion stabilizers[J].Carbohydrate Polymers,2019,219:77-86.
[15] 王中江, 江连洲,魏冬旭,等.pH值对大豆分离蛋白构象及表面疏水性的影响[J].食品科学,2012,33(11):47-51.
WANG Z J,JIANG L Z,WEI D X,et al.Effect of pH on conformation and surface hydrophobicity of soybean protein isolate[J].Food Science,2012,33(11):47-51.
[16] ERICKSON D P,OZTURK O K,SELLING G,et al.Corn zein undergoes conformational changes to higher beta-sheet content during its self-assembly in an increasingly hydrophilic solvent[J].International Journal of Biological Macromolecules,2020,157:232-239.
[17] KATO A,NAKAI S.Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins[J].Biochim Biophys Acta,1980,624(1):13-20.
[18] ZHU Y Q,MCCLEMENTS D J,ZHOU W,et al.Influence of ionic strength and thermal pretreatment on the freeze-thaw stability of pickering emulsion gels[J].Food Chemistry,2020,303:125 401.
[19] JIN J,MA H L,WANG K,et al.Effects of multi-frequency power ultrasound on the enzymolysis and structural characteristics of corn gluten meal[J].Ultrasonics Sonochemistry,2015,24:55-64.
[20] MOMANY F A,SESSA D J,LAWTON J W,et al.Structural characterization of α-zein[J].Journal of Agricultural and Food Chemistry,2006,54(2):543-547.
[21] MATSUSHIMA N,DANNO G I,TAKEZAWA H,et al.Three-dimensional structure of maize α-zein proteins studied by small-angle x-ray scattering[J].Biochim Biophys Acta,1997,1 339(1):14-22.
[22] REN X F,WEI X,MA H,et al..Effects of a dual-frequency frequency-sweeping ultrasound treatment on the properties and structure of the zein protein[J].Cereal Chemistry Journal,2015,92(2):193-197.
[23] SELLING G W,HAMAKER S A H,SESSA D J.Effect of solvent and temperature on secondary and tertiary structure of zein by circular dichroism[J].Cereal Chemistry,2007,84(3):265-270.
[24] 康雪帆, 李海明,陈丹洁,等.糖接枝玉米醇溶蛋白包埋虾青素[J].食品科学,2018,39(7):168-173.
KANG X F,LI H M,CHEN D J,et al.Encapsulation of astaxanthin in zein-saccharide graft reaction products[J].Food Science,2018,39(7):168-173.
[25] 李晨. 基于糖基化反应的花生蛋白成膜性及其风味缓释效应的研究[D].无锡:江南大学,2015.
LI C.Study of physiochemical properties and flavor controlled release of peanut protein isolate-polysaccharides films crosslinked by glycation reaction[D].Wuxi:Jiangnan University,2015.
[26] WANG Y,PADUA G W.Nanoscale characterization of zein self-assembly[J].Langmuir,2012,28(5):2 429-2 435.
[27] FABRA M J,LOPEZ-RUBIO A,LAGARON J M.High barrier polyhydroxyalcanoate food packaging film by means of nanostructured electrospun interlayers of zein[J].Food Hydrocolloids,2013,32(1):106-114.
[28] LIANG Q,REN X F,ZHANG X,et al.Effect of ultrasound on the preparation of resveratrol-loaded zein particles[J].Journal of Food Engineering,2018,221:88-94.
[29] WANG L,ZHANG Y.Eugenol nanoemulsion stabilized with zein and sodium caseinate by self-assembly[J].Journal of Agricultural and Food Chemistry,2017,65(14):2 990-2 998.
[30] FREITAS C,MÜLLER R H.Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (slntm) dispersions[J].International Journal of Pharmaceutics,1998,168(2):221-229.
[31] ZOU Y,VAN BAALEN C,YANG X,et al.Tuning hydrophobicity of zein nanoparticles to control rheological behavior of pickering emulsions[J].Food Hydrocolloids,2018,80:130-140.
[32] WANG M,FENG M Q,JIA K,et al.Effects of flaxseed gum concentrations and pH values on the stability of oil-in-water emulsions[J].Food Hydrocolloids,2017,67:54-62.
[33] WANG L J,HU Y Q,YIN S W,et al.Fabrication and characterization of antioxidant Pickering emulsions stabilized by zein/chitosan complex particles (ZCP)[J].Journal of Agricultural and Food Chemistry,2015,63(9):2 514-2 524.
[34] SOLTANI S,MADADLOU A.Two-step sequential cross-linking of sugar beet pectin for transforming zein nanoparticle-based Pickering emulsions to emulgels[J].Carbohydrate Polymers,2016,136:738-743.
[35] REN X F,HOU T,LIANG Q F,et al.Effects of frequency ultrasound on the properties of zein-chitosan complex coacervation for resveratrol encapsulation[J].Food Chemistry,2019,279:223-230.
[36] 孙翠霞. 基于玉米醇溶蛋白的复合胶体颗粒制备、表征及其应用[D].北京:中国农业大学,2018.
SUN C X.Fabrication,characterization and application of zein-based composite colloidal particles[D].Beijing:China Agricultural University,2018.
[37] KAUSHIK P,DOWLING K,ADHIKARI R,et al.Effect of extraction temperature on composition,structure and functional properties of flaxseed gum[J].Food Chemistry,2017,215:333-340.
[38] WAN Z L,WANG L Y,WANG J M, et al.Synergistic interfacial properties of soy protein-stevioside mixtures:relationship to emulsion stability[J].Food Hydrocolloids,2014,39:127-135.
[1] 符群, 郐滨, 钟明旭, 吴小杰. 超声波辅助酶解法提取北虫草菌素及其降血糖活性研究[J]. 食品与发酵工业, 2021, 47(9): 120-127.
[2] 李云嵌, 杨曦, 刘江, 吴娟, 王振兴, 张雪春. 超声波辅助碱法提取美藤果分离蛋白及其加工性质研究[J]. 食品与发酵工业, 2021, 47(9): 128-135.
[3] 赵颖颖, 李三影, 田金凤, 扶磊, 贾丰鲜, 李可, 吴丽丽, 白艳红. 超声波对不同盐浓度下肌原纤维蛋白溶解性的影响[J]. 食品与发酵工业, 2021, 47(7): 197-202.
[4] 冯鑫, 马良, 戴宏杰, 付余, 余永, 朱瀚昆, 王红霞, 张宇昊. 食品级Pickering乳液的稳定性及β-胡萝卜素的装载研究[J]. 食品与发酵工业, 2021, 47(6): 18-25.
[5] 孙聿尧, 谢晶, 王金锋. 超声波解冻与传统解冻方式的比较与竞争力评估[J]. 食品与发酵工业, 2021, 47(6): 253-258.
[6] 杨燕敏, 郑振佳, 高琳, 张砚垒, 张仁堂. 红枣多糖超声波提取、结构表征及抗氧化活性评价[J]. 食品与发酵工业, 2021, 47(5): 120-126.
[7] 牟方婷, 袁美, 石黎琳, 曾凡坤, 陈嘉, 张玉. 超声和微波辅助果胶酶处理对果胶结构的影响[J]. 食品与发酵工业, 2021, 47(4): 215-221.
[8] 李琦, 曾凡坤, 华蓉, 王继飞. 响应面法优化超声辅助提取韭菜根不溶性膳食纤维[J]. 食品与发酵工业, 2021, 47(3): 128-134.
[9] 姜曼. 蛋白质基Pickering乳液的研究进展[J]. 食品与发酵工业, 2021, 47(3): 259-264.
[10] 陈致印, 刘伟鹏, 王盈希, 曾立, 向国红, 刘桃李, 龚意辉. 三种不同改性方法对甘薯渣不溶性膳食纤维改性效果的研究[J]. 食品与发酵工业, 2021, 47(2): 57-62.
[11] 赵紫悦, 张伊侬, 彭松林, 李懿璇, 康梦瑶, 尚永彪. 超声波处理对大豆油预乳化效果的影响[J]. 食品与发酵工业, 2021, 47(2): 167-173.
[12] 马翼飞, 刘欢, 单钱艺, 任山, 包建强. 不同解冻方式对小黄鱼品质的影响[J]. 食品与发酵工业, 2021, 47(1): 222-228.
[13] 季现秋, 罗欣, 朱立贤, 梁荣蓉, 陈雪, 韩明山, 张文华, 张一敏. 新型牛肉嫩化技术研究进展[J]. 食品与发酵工业, 2021, 47(1): 327-333.
[14] 靳力为, 任广跃, 段续, 张迎敏. 超声波协同作用对真空冻干杏脱水及其品质的影响[J]. 食品与发酵工业, 2020, 46(6): 133-139.
[15] 巫永华, 陆文静, 刘梦虎, 张建萍, 陈安徽, 邵颖, 王长凯, 刘恩岐. 响应面优化超声波辅助双水相提取牛蒡多糖及抗氧化分析[J]. 食品与发酵工业, 2020, 46(5): 215-223.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn