Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (4): 215-221    DOI: 10.13995/j.cnki.11-1802/ts.025034
  生产与科研应用 本期目录 | 过刊浏览 | 高级检索 |
超声和微波辅助果胶酶处理对果胶结构的影响
牟方婷, 袁美, 石黎琳, 曾凡坤*, 陈嘉, 张玉
(西南大学 食品科学学院, 重庆,400715)
Effect of ultrasonic and microwave assisted with pectinase treatment on pectin structure
MU Fangting, YUAN Mei, SHI Lilin, ZENG Fankun*, CHEN Jia, ZHANG Yu
(College of Food Science,Southwest University,Chongqing 400715,China)
下载:  HTML   PDF (3936KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以柑橘果胶为原料,对采用超声波和微波辅助果胶酶制备改性柑橘果胶的工艺条件进行了研究,并通过液相色谱仪、傅里叶红外光谱、扫描电镜对改性柑橘果胶和原柑橘果胶的理化性质和结构特性进行表征。结果表明,超声波和微波处理改性果胶时均能有效提高果胶酶的降解效率,几种降解方式得到的果胶的重均分子质量均比原果胶(283 kDa)低56.18%以上。超声、微波作用能显著提高半乳糖醛酸(galacturonic acid,GalA)的含量,微波处理酶解底物(MEPⅠ)、微波处理酶解产物(MEPⅡ)、超声波处理酶解底物(UEPⅠ)、超声波处理酶解产物(UEPⅡ)的GalA含量相比酶解果胶(39.57%)分别提高了52.31%、46.88%、66.69%、61.11%。不同的降解方法不改变果胶的单糖类型,但会使单糖的组成有差异,同时发现改性后果胶的主链和侧链发生不同程度的断裂,且酯化度减小。扫描电镜图可以看出果胶酶、微波、超声在不同程度上改变了柑橘果胶的微观结构。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
牟方婷
袁美
石黎琳
曾凡坤
陈嘉
张玉
关键词:  改性  柑橘果胶  超声波  微波  结构分析    
Abstract: Using citrus pectin as raw material, the process conditions for preparing modified citrus pectin using ultrasonic and microwave assisted pectinase were studied, and the physicochemical properties and structural characteristics of modified and original citrus pectin were characterized by liquid chromatography, Fourier infrared spectroscopy and scanning electron microscopy. The results showed that the degradation efficiency of pectinase could be improved by both ultrasonic and microwave treatment. The weight average molecular weight of the pectin obtained by several degradation methods was 56.18% which was lower than that of the original pectin (283 kDa). Ultrasonic and microwave effect can significantly increase the content of galacturonic acid(GalA), microwave processing enzyme substrates (MEP Ⅰ), microwave digestion product (MEP Ⅱ), ultrasonic treatment enzyme substrates (UEP Ⅰ), ultrasonic treatment enzymolysis products (UEP Ⅱ) GalA content than pectin enzyme solution (39.57%) increased by 52.31%, 46.88%, 66.69% and 61.11% respectively. Moreover, different degradation methods did not change the monosaccharide types of pectin, but made the composition of monosaccharides different. At the same time, it was found that the main chain and side chain of pectin were broken to different degrees after modification, and the degree of esterification was reduced. Scanning electron microscopy (SEM) showed that pectinase, microwave and ultrasound changed the microstructure of pectin in different degrees.
Key words:  modification    citrus pectin    ultrasound    microwave    structure analysis
收稿日期:  2020-07-13      修回日期:  2020-08-21           出版日期:  2021-02-25      发布日期:  2021-03-16      期的出版日期:  2021-02-25
作者简介:  硕士研究生(曾凡坤教授为通讯作者,E-mail:zengfankun@swu.edu.cn)
引用本文:    
牟方婷,袁美,石黎琳,等. 超声和微波辅助果胶酶处理对果胶结构的影响[J]. 食品与发酵工业, 2021, 47(4): 215-221.
MU Fangting,YUAN Mei,SHI Lilin,et al. Effect of ultrasonic and microwave assisted with pectinase treatment on pectin structure[J]. Food and Fermentation Industries, 2021, 47(4): 215-221.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025034  或          http://sf1970.cnif.cn/CN/Y2021/V47/I4/215
[1] 程一鑫. 超声波对高甲氧基果胶NMR转折点蔗糖浓度及其结构的影响[D].南昌:南昌大学, 2014.
CHENG Y X.Effect of ultrasonic on NMR transition point of sucrose concentration and structure of high methoxy pectin[D].Nanchang:Nanchang University, 2014.
[2] 李倩倩,付佳璇,赵玉梅,等.果胶降解与采后果实质地变化研究进展[J].中国食品学报, 2019, 19(9):298-307.
LI Q Q, FU J X, ZHAO Y M, et al.Progress on pectin and texture change of postharvest fruits[J].Journal of Chinese Institute of Food Science and Technology, 2019, 19(9):298-307.
[3] 张丽芬,吴倩,陈复生,等.改性果胶结构、功能及方法的研究进展[J].粮食与油脂, 2015, 28(1):1-5.
ZHANG L F, WU Q, CHEN F S, et al.Research on the structure,function and methods of modified pectin[J].Cereals and Oils, 2015, 28(1):1-5.
[4] CHEN J, LIANG R H, LIU W, et al.Pectic-oligosaccharides prepared by dynamic high-pressure microfluidization and their in vitro fermentation properties[J].Carbohydr Polym, 2013, 91(1):175-182.
[5] 杨蕾. 果胶及低聚糖的制备及其对双歧杆菌体外增殖作用的研究[D].芜湖:安徽工程大学, 2015.
YANG L.Reparation of pectins and pectin-oligosaccharides and its effect on Bifidobacterium in vitro[D].Wuhu:Anhui Polytechnic University, 2015.
[6] DI R, VAKKALANKA M S, ONUMPAI C, et al.Pectic oligosaccharide structure-function relationships:Prebiotics, inhibitors of Escherichia coli o157:h7 adhesion and reduction of shiga toxin cytotoxicity in ht29 cells[J].Food Chem, 2017, 227:245-254.
[7] XU G R, ZHANG C, YANG H X, et al.Modified citrus pectin ameliorates myocardial fibrosis and inflammation via suppressing galectin-3 and TLR4/MYD88/NF-кB signaling pathway[J].Biomed Pharmacother, 2020, 126:110 071.
[8] TAKEI TAKAYUKI, SATO MITSUNOBU, IJIMA HIROYUKI, et al.In situ gellable oxidized citrus pectin for localized delivery of anticancer drugs and prevention of homotypic cancer cell aggregation[J].Biomacromolecules, 2010, 11(12):3 525-3 530.
[9] YAN J, KATZ AARON.Pectasol-c modified citrus pectin induces apoptosis and inhibition of proliferation in human and mouse androgen-dependent and- independent prostate cancer cells[J].Integr Cancer Ther, 2010, 9(2):197-203.
[10] NANGIA-MAKKER PRATIMA, HOGAN VICTOR, HONJO YUICHIRO, et al.Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin[J].J Natl Cancer Inst, 2002, 94(24):1 854-1 862.
[11] 魏子淏,杨伟,刘夫国,等.改性柑橘果胶研究进展[J].中国食品添加剂, 2014(3):194-200.
WEI Z H, YANG W, LIU F G, et al.Advances in modified citrus pectin[J].China Food Additives, 2014(3):194-200.
[12] 邱现创,赵宁,李晨,等.铁皮石斛多糖提取工艺优化及对果蝇抗氧化能力的影响[J].食品科学, 2018, 39(2):273-280.
QIU X C, ZHAO N, LI C, et al.Optimization of extraction of polysaccharide from Dendrobium officinale and its antioxidant effect on Drosophila melanogaster[J].Food Science, 2018, 39(2):273-280.
[13] RAHUL SESHADRI, JOCHEN WEISS, GREG J HULBERT, et al.Ultrasonic processing influences rheological and optical properties of high-methoxyl pectin dispersions[J].Food Hydrocolloids, 2003, 17(2):191-197.
[14] 万宇俊,殷军艺,聂少平,等.微波提取对胡萝卜中的多糖基本结构特征及固体形貌的影响[J].食品科学, 2017, 38(7):1-5.
WAN Y J, YIN J Y, NIE S P, et al.Impact of microwave extraction on structural characteristics and morphology of carrot (Daucus carota L.) polysaccharide[J].Food Science, 2017, 38(7):1-5.
[15] EVZˇENIA DRˇÍMALOVÁ, VLADIMY'R VELEBNY, VLASTA SASINKOVÁ, et al.Degradation of hyaluronan by ultrasonication in comparison to microwave and conventional heating[J].Carbohydrate Polymers, 2005, 61(4):420-426.
[16] 廖祥兵,陈晓明,肖伟,等.DNS法定量测定还原糖的波长选择[J].中国农学通报, 2017, 33(15):144-149.
LIAO X B, CHEN X M, XIAO W, et al.The wavelength selection of reducing sugar quantitatively determined by DNS method[J].Chinese Agricultural Science Bulletin, 2017, 33(15):144-149.
[17] JONGBIN LIM, JIYOUNG YOO, SANGHOON KO, et al.Extraction and characterization of pectin from yuza (citrus junos) pomace:A comparison of conventional-chemical and combined physical-enzymatic extractions[J].Food Hydrocolloids, 2012, 29(1):160-165.
[18] YANG X B, ZHAO Y, WANG Q W, et al.Analysis of the monosaccharide components in angelica polysaccharides by high performance liquid chromatography[J].Analytical Sciences, 2005, 21(10):1 177-1 180.
[19] 赵文婷. 超高压辅助酶法制备低酯果胶及酶激活机理研究[D].北京:中国农业大学, 2016.
ZHAO W T.Preparation and characterization of low methoxyl pectin by high hydrostatic pressure-assisted enzymatic treatment and mechanism of pressure-induced activation[D].Beijing:China Agricultural University, 2016.
[20] WANG W J, MA X B, XU Y T, et al.Ultrasound-assisted heating extraction of pectin from grapefruit peel:Optimization and comparison with the conventional method[J].Food Chemistry, 2015, 178:106-114.
[21] MANEL MASMOUDI, SOUHAIL BESBES, FATMA ABBES, et al.Pectin extraction from lemon by-product with acidified date juice:Effect of extraction conditions on chemical composition of pectins[J].Food and Bioprocess Technology, 2012, 5(2):687-695.
[22] ZHANG L F, YE X Q, XUE SOPHIA JUN, et al.Effect of high-intensity ultrasound on the physicochemical properties and nanostructure of citrus pectin[J].J Sci Food Agric, 2013, 93(8):2 028-2 036.
[23] 陈颖. 改性果胶的制备及其结合半乳凝集素-3的结构特征[D].无锡:江南大学, 2016.
CHEN Y.Preparation of modified pectin and the structure characteristics of its binding to GAL-3[D].Wuxi:Jiangnan University, 2016.
[24] WANG W J, MA X B, JIANG P, et al.Characterization of pectin from grapefruit peel:A comparison of ultrasound-assisted and conventional heating extractions[J].Food Hydrocolloids, 2016, 61:730-739.
[25] 马晓彬. 果胶酶促降解中的超声波作用途径及机理研究[D].杭州:浙江大学, 2017.
MA X B.Research on function routes and mechanisms of ultrasound in the enzymatic degradation of pectin[D].Hangzhou:Zhejiang University, 2017.
[26] AMATJAN SAWUT, MAMATJAN YIMIT, WANFU SUN, et al.Photopolymerisation and characterization of maleylatedcellulose-g-poly(acrylic acid) superabsorbent polymer[J].Carbohydrate Polymers, 2014, 101:231-239.
[27] PAPPAS C S, MALOVIKOVA A, HROMADKOVA Z, et al.Determination of the degree of esterification of pectinates with decyl and benzyl ester groups by diffuse reflectance infrared Fourier transform spectroscopy (drifts) and curve-fitting deconvolution method[J].Carbohydrate Polymers, 2004, 56(4):465-469.
[28] KACURÁKOVÁ M, CAPEK P, SASINKOVÁ V, et al.FT-IR study of plant cell wall model compounds:Pectic polysaccharides and hemicelluloses[J].Carbohydr Polym, 2000, 43(2):195-203.
[29] SUN J X, SUN R C, SUN X F, et al.Fractional and physico-chemical characterization of hemicelluloses from ultrasonic irradiated sugarcane bagasse[J].Carbohydr Res, 2003, 339(2):291-300.
[1] 蒋彤, 纪杭燕, 柏玉香. Lactobacillus reuteri 121 4,6-α-葡萄糖基转移酶GtfBdN改性薯类淀粉产物结构及理化特性研究[J]. 食品与发酵工业, 2021, 47(9): 42-48.
[2] 符群, 郐滨, 钟明旭, 吴小杰. 超声波辅助酶解法提取北虫草菌素及其降血糖活性研究[J]. 食品与发酵工业, 2021, 47(9): 120-127.
[3] 李云嵌, 杨曦, 刘江, 吴娟, 王振兴, 张雪春. 超声波辅助碱法提取美藤果分离蛋白及其加工性质研究[J]. 食品与发酵工业, 2021, 47(9): 128-135.
[4] 朱俊成, 冯鑫, 李璐思, 马良, 戴宏杰, 付余, 黄少林, 张宇昊. 不同干燥方式对明胶特性的影响[J]. 食品与发酵工业, 2021, 47(8): 34-39.
[5] 郭金喜, 马燕, 范田丽, 杨光勇, 马君刚. 微波消解-电感耦合等离子体串联质谱法测定新疆黑枸杞红酒中微量元素的主成分分析[J]. 食品与发酵工业, 2021, 47(8): 243-249.
[6] 赵颖颖, 李三影, 田金凤, 扶磊, 贾丰鲜, 李可, 吴丽丽, 白艳红. 超声波对不同盐浓度下肌原纤维蛋白溶解性的影响[J]. 食品与发酵工业, 2021, 47(7): 197-202.
[7] 孙聿尧, 谢晶, 王金锋. 超声波解冻与传统解冻方式的比较与竞争力评估[J]. 食品与发酵工业, 2021, 47(6): 253-258.
[8] 杨燕敏, 郑振佳, 高琳, 张砚垒, 张仁堂. 红枣多糖超声波提取、结构表征及抗氧化活性评价[J]. 食品与发酵工业, 2021, 47(5): 120-126.
[9] 李慧敏, 郑淘, 曾艺琼, 范郁冰, 李卫真, 严建业, 赵利平, 郑慧, 杨勇. AHP-CRITIC权重分析法综合优选玉竹全粉改性工艺[J]. 食品与发酵工业, 2021, 47(5): 138-146.
[10] 刘瑞, 陶乐仁, 万康. 微波处理对‘新大坪'马铃薯贮藏品质的影响[J]. 食品与发酵工业, 2021, 47(5): 168-173.
[11] 姜昕, 王锡昌, 潘凤涛, 季中春, 施文正. 物理法改善鱼肉蛋白功能特性研究概述[J]. 食品与发酵工业, 2021, 47(5): 288-295.
[12] 杨波, 王珂, 杨光, 吴君波, 江容安. 黄原胶的干热改性及复配增稠应用[J]. 食品与发酵工业, 2021, 47(4): 116-122.
[13] 王文成, 胡银凤, 饶建平, 谢建华. 微波真空干燥速溶绿茶工艺优化[J]. 食品与发酵工业, 2021, 47(4): 202-207.
[14] 李琦, 曾凡坤, 华蓉, 王继飞. 响应面法优化超声辅助提取韭菜根不溶性膳食纤维[J]. 食品与发酵工业, 2021, 47(3): 128-134.
[15] 陈致印, 刘伟鹏, 王盈希, 曾立, 向国红, 刘桃李, 龚意辉. 三种不同改性方法对甘薯渣不溶性膳食纤维改性效果的研究[J]. 食品与发酵工业, 2021, 47(2): 57-62.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn