Comparative genome analysis of carbohydrate activity enzymes zymogram of Lactobacillus from Guangxi pickle
PENG Mingfang1, LI Peijun1,2 *, SHAN Yang1,2,3, CHEN Yuqiu1, YANG Daijun 1, LEI Lichang 1, HUANG Zhihui1, YU Kongxin1
1(College of Chemistry and Bioengineering, Guilin University of technology, Guilin 541004, China) 2(Hunan Academy of Agricultural Sciences, Hunan Agricultural Processing Institute, Changsha 410125, China) 3(Longping Branch Graduate School,Hunan University, Changsha 410125, China)
Abstract: Carbohydrate active enzymes (CAZymes) in microorganisms can degrade plant tissues. Compared with fungi CAZymes, the research on Lactobacillus CAZymes is still relatively scarce. In this study, three lactobacillus strains producing CAZymes were isolated from Guangxi pickle, and their encoding genes were compared by second-generation sequencing. 16S rRNA sequencing showed that these three strains were Lactobacillus brevis DC4, Lactobacillus plantarum GLKK1 and GLKK2. Under liquid-state fermentation, the activities of pectinase, cellulase and hemicellulase of L. brevis DC4 reached (0.40±0.01), (0.04±0.01), and (0.19±0.01) U/mL, respectively. The number of coding sequences (CDS) of DC4, GLKK1 and GLKK2 were 2 615, 3 355 and 3 270, respectively. According to COG annotations, they participated in carbohydrate transport and metabolism, transcription, amino acid transport and metabolism, and so on; CAZymes annotations focused on glycoside hydrolases (GHs), glycosyl transferases (GTs) and carbohydrate esterases (CEs). The three strains contained 17 CAZymes common genes, including cellulase, hemicellulase, pectinase and starch hydrolase and esterase. In addition, L. brevis DC4 contained 10 unique genes, including GH8, GH30 and GH51 families, and L. plantarum GLKK1 and L. plantarum GLKK 2 contained seven unique genes, including GH39, GH13, CE2 and GH78 families.
[1] 王帅, 陈冠军, 张怀强, 等.碳水化合物活性酶数据库(CAZy)及其研究趋势[J].生物加工过程, 2014, 12(1):102-108. WANG S, CHEN G J, ZHANG H Q, et al.Carbohydrate-active enzyme(CAZy) database and its new prospect[J].Chinese Journal of Bioprocess Engineering, 2014, 12(1):102-108. [2] NGUYEN S T C, FREUND H L, KASANJIAN J, et al.Function, distribution, and annotation of characterized cellulases, xylanases, and chitinases from CAZy[J].Applied Microbiology and Biotechnology, 2018, 102(4):1 629-1 637. [3] HUTTNER S, THANH THUY N, GRANCHI Z, et al.Combined genome and transcriptome sequencing to investigate the plant cell wall degrading enzyme system in the thermophilic fungus Malbranchea cinnamomea[J].Biotechnology Biofuels, 2017, 10(1):265. [4] 《乳业科学与技术》丛书编委会.益生菌[M].北京:化学工业出版社, 2018. Dairy Science and Technology Series Editorial Board.Probiotics[M].Beijing:Chemical Industry Press, 2018. [5] ZHANG F, TANG Y, REN Y, et al.Microbial composition of spoiled industrial-scale sichuan paocai and characteristics of the microorganisms responsible for paocai spoilage[J].International Journal of Food Microbiology, 2018, 275:32-38. [6] LEE F H, WAN S Y, FOO H L, et al.Comparative study of extracellular proteolytic, cellulolytic, and hemicellulolytic enzyme activities and biotransformation of palm kernel cake biomass by lactic acid bacteria isolated from malaysian foods[J].International Journal of Molecular Sciences, 2019, 20(20):4 979. [7] YE K, LI P, GU Q.Complete genome sequence analysis of a strain Lactobacillus pentosus ZFM94 and its probiotic characteristics[J].Genomics, 2020, 112(5):3 142-3 149. [8] 陈臣. 植物乳杆菌ST-Ⅲ全基因组序列分析及其对低聚果糖代谢通路的解析[D].无锡:江南大学, 2014. CHEN C.Characterization of the complete genome sequence of Lactobacillus plantarum ST III and its pathways for fructooligosaccharides metabolism[D].Wuxi: Jiangnan University, 2014. [9] BURON-MOLES G, CHAILYAN A, DOLEJS I, et al.Uncovering carbohydrate metabolism through a genotype-phenotype association study of 56 lactic acid bacteria genomes[J].Applied Microbiology and Biotechnology, 2019, 103(7):3 135-3 152. [10] 张飞, 岳田利, 费坚, 等.果胶酶活力的测定方法研究[J].西北农业学报, 2004(4):134-137. ZHANG F, YUE T L, FEI J, et al.Research on measuring method of PG activity[J].Acta Agriculturae Boreali-occidentalis Sinica, 2004(4):134-137. [11] 马江山. 解析内生细菌Pantoea ananatis Sd-1的木质纤维素降解体系研究[D].长沙:湖南大学, 2016. MA J S.Analysis of the lignocellulose degradation system in endophytic bacterium Pantoea ananatis Sd-1[D].Changsha:Hunan University.2016. [12] 何海燕, 覃拥灵, 陆世则, 等.产果胶酶棘孢曲霉的筛选鉴定及微波诱变育种[J].中国饲料, 2015(2):20-22. HE H Y, QIN Y L, LU S Z, et al.Screening, identification and microwave mutation breeding of Aspergillus aculeatus of producing pectinase[J].China Feed, 2015(2):20-22. [13] LUO R B, LIU B H, XIE Y L, et al.Soapdenovo2:An empirically improved memory-efficient short-read de novo assembler[J].GigaScience, 2012, 1(1):18-18. [14] DELCHER A L, BRATKE K A, POWERS E C, et al.Identifying bacterial genes and endosymbiont DNA with glimmer[J].Bioinformatics, 2007, 23(6):673-679. [15] BESEMER J, BORODOVSKY M.Genemark:Web software for gene finding in prokaryotes, eukaryotes and viruses[J].Nucleic Acids Research, 2005, 33(Web Server issue):451-454. [16] LOMBARD V, GOLACONDA R H, DRULA E, et al.The carbohydrate-active enzymes database (cazy) in 2013[J].Nucleic Acids Research, 2014, 42(Database issue):490-495. [17] SÁNCHEZ C.Lignocellulosic residues:Biodegradation and bioconversion by fungi[J].Biotechnology Advances, 2009, 27(2):185-194. [18] TANIZAWA Y, TOHNO M, KAMINUMA E, et al.Complete genome sequence and analysis of Lactobacillus hokkaidonensis LOOC260(T), a psychrotrophic lactic acid bacterium isolated from silage[J].Bmc Genomics, 2015, 16:240. [19] 陈凯莉, 许轲, 张贤聪, 等.果实中果胶代谢相关酶基因的研究进展[J].园艺学报, 2017, 44(10):2 008-2 014. CHEN K L, XU K, ZHANG X C, et al.Advances in genes information involved in pectin metabolism in fruit[J].Acta Horticulturae Sinica, 2017, 44(10):2 008-2 014. [20] SINGH A, ADSUL M, VAISHNAV N, et al.Improved cellulase production by Penicillium janthinellum mutant[J].Indian Journal of Experimental Biology, 2017, 55(7):436-440. [21] 安晓娜, 李伟程, 于洁, 等.比较基因组学分析不同来源罗伊氏乳杆菌基因多样性及生境适应性[J].微生物学报, 2020, 60(5):875-886. AN X N, LI W C, YU J, et al.Comparative genomics analysis of genetic diversity and habitat adaptability of Lactobacillus reuteri from different sources[J].Acta Microbiologica Sinica, 2020, 60(5):875-886. [22] 张鹏飞. 胡萝卜软腐果胶杆菌致病关键基因eda的功能研究[D].南京:南京农业大学, 2015. ZHANG P F.Functional analysis of eda, a crucial gene to pathogenicity of Pectobacterium carotovorum subsp.Carotovorum[D].Nanjing:Nanjing Agricultural University, 2015.