Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (4): 68-73    DOI: 10.13995/j.cnki.11-1802/ts.025057
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
比较基因组揭示广西酸菜乳杆菌碳水化合物活性酶谱
彭明芳1, 李培骏1,2 *, 单杨1,2,3, 陈玉秋1, 杨岱峻1, 雷丽嫦1, 黄芝辉1, 余孔新1
1(桂林理工大学 化学与生物工程学院,广西 桂林,541004)
2(湖南省农业科学院,湖南省农产品加工研究所,湖南 长沙,410125)
3(湖南大学 研究生院隆平分院,湖南 长沙,410125)
Comparative genome analysis of carbohydrate activity enzymes zymogram of Lactobacillus from Guangxi pickle
PENG Mingfang1, LI Peijun1,2 *, SHAN Yang1,2,3, CHEN Yuqiu1, YANG Daijun 1, LEI Lichang 1, HUANG Zhihui1, YU Kongxin1
1(College of Chemistry and Bioengineering, Guilin University of technology, Guilin 541004, China)
2(Hunan Academy of Agricultural Sciences, Hunan Agricultural Processing Institute, Changsha 410125, China)
3(Longping Branch Graduate School,Hunan University, Changsha 410125, China)
下载:  HTML   PDF (9137KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 微生物中的碳水化合物活性酶(carbohydrate active enzymes,CAZymes)具有降解植物组织的作用,相对于真菌,目前对于乳杆菌的CAZymes研究还比较少。该研究从广西酸菜中筛选获得了3株产CAZymes的乳杆菌,并通过二代测序技术比较其编码基因。16S rRNA测序结果表明3株乳杆菌分别是Lactobacillus brevis DC4,Lactobacillus plantarum GLKK1和GLKK2;经液态发酵后,L.brevis DC4产果胶酶、纤维素酶和半纤维素酶分别为(0.40±0.01)、(0.04±0.01)和(0.19±0.01) U/mL。乳杆菌DC4、GLKK1和GLKK2编码序列分别有2 615、3 355以及3 270个,COG注释均集中在碳水化合物转运与代谢、转录、氨基酸转运与代谢等;CAZymes注释均集中在糖苷水解酶(glycoside hydrolases,GHs)、糖基转移酶(glycosyl transferases,GTs)和碳水化合物酯酶(carbohydrate esterases,CEs)。3株乳杆菌包含17种CAZymes共有基因,包括纤维素、半纤维素、果胶、淀粉水解酶和酯酶。此外,L.brevis DC4菌株有10种特有基因,包括GH8、GH30和GH51家族,而L.plantarum GLKK1和L.plantarum GLKK2包含7种特有基因,包括GH39、GH13、CE2和GH78家族。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭明芳
李培骏
单杨
陈玉秋
杨岱峻
雷丽嫦
黄芝辉
余孔新
关键词:  乳杆菌  碳水化合物活性酶  植物多糖  比较基因组  酸菜    
Abstract: Carbohydrate active enzymes (CAZymes) in microorganisms can degrade plant tissues. Compared with fungi CAZymes, the research on Lactobacillus CAZymes is still relatively scarce. In this study, three lactobacillus strains producing CAZymes were isolated from Guangxi pickle, and their encoding genes were compared by second-generation sequencing. 16S rRNA sequencing showed that these three strains were Lactobacillus brevis DC4, Lactobacillus plantarum GLKK1 and GLKK2. Under liquid-state fermentation, the activities of pectinase, cellulase and hemicellulase of L. brevis DC4 reached (0.40±0.01), (0.04±0.01), and (0.19±0.01) U/mL, respectively. The number of coding sequences (CDS) of DC4, GLKK1 and GLKK2 were 2 615, 3 355 and 3 270, respectively. According to COG annotations, they participated in carbohydrate transport and metabolism, transcription, amino acid transport and metabolism, and so on; CAZymes annotations focused on glycoside hydrolases (GHs), glycosyl transferases (GTs) and carbohydrate esterases (CEs). The three strains contained 17 CAZymes common genes, including cellulase, hemicellulase, pectinase and starch hydrolase and esterase. In addition, L. brevis DC4 contained 10 unique genes, including GH8, GH30 and GH51 families, and L. plantarum GLKK1 and L. plantarum GLKK 2 contained seven unique genes, including GH39, GH13, CE2 and GH78 families.
Key words:  Lactobacillus spp.    carbohydrate active enzymes    plant polysaccharides    comparative genome    pickle
收稿日期:  2020-07-14      修回日期:  2020-09-01           出版日期:  2021-02-25      发布日期:  2021-03-16      期的出版日期:  2021-02-25
基金资助: 广西特聘专家团队项目(厅发[2018]39);广西科技基地和人才专项(桂科AD19110074);广西中青年教师基础能力提升项目(2018KY0257);广西电磁化学功能物质重点实验室开放基金(EMFM20162204)
作者简介:  硕士研究生(李培骏副教授为通讯作者,E-mail:lipeijun@glut.edu.cn)
引用本文:    
彭明芳,李培骏,单杨,等. 比较基因组揭示广西酸菜乳杆菌碳水化合物活性酶谱[J]. 食品与发酵工业, 2021, 47(4): 68-73.
PENG Mingfang,LI Peijun,SHAN Yang,et al. Comparative genome analysis of carbohydrate activity enzymes zymogram of Lactobacillus from Guangxi pickle[J]. Food and Fermentation Industries, 2021, 47(4): 68-73.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025057  或          http://sf1970.cnif.cn/CN/Y2021/V47/I4/68
[1] 王帅, 陈冠军, 张怀强, 等.碳水化合物活性酶数据库(CAZy)及其研究趋势[J].生物加工过程, 2014, 12(1):102-108.
WANG S, CHEN G J, ZHANG H Q, et al.Carbohydrate-active enzyme(CAZy) database and its new prospect[J].Chinese Journal of Bioprocess Engineering, 2014, 12(1):102-108.
[2] NGUYEN S T C, FREUND H L, KASANJIAN J, et al.Function, distribution, and annotation of characterized cellulases, xylanases, and chitinases from CAZy[J].Applied Microbiology and Biotechnology, 2018, 102(4):1 629-1 637.
[3] HUTTNER S, THANH THUY N, GRANCHI Z, et al.Combined genome and transcriptome sequencing to investigate the plant cell wall degrading enzyme system in the thermophilic fungus Malbranchea cinnamomea[J].Biotechnology Biofuels, 2017, 10(1):265.
[4] 《乳业科学与技术》丛书编委会.益生菌[M].北京:化学工业出版社, 2018.
Dairy Science and Technology Series Editorial Board.Probiotics[M].Beijing:Chemical Industry Press, 2018.
[5] ZHANG F, TANG Y, REN Y, et al.Microbial composition of spoiled industrial-scale sichuan paocai and characteristics of the microorganisms responsible for paocai spoilage[J].International Journal of Food Microbiology, 2018, 275:32-38.
[6] LEE F H, WAN S Y, FOO H L, et al.Comparative study of extracellular proteolytic, cellulolytic, and hemicellulolytic enzyme activities and biotransformation of palm kernel cake biomass by lactic acid bacteria isolated from malaysian foods[J].International Journal of Molecular Sciences, 2019, 20(20):4 979.
[7] YE K, LI P, GU Q.Complete genome sequence analysis of a strain Lactobacillus pentosus ZFM94 and its probiotic characteristics[J].Genomics, 2020, 112(5):3 142-3 149.
[8] 陈臣. 植物乳杆菌ST-Ⅲ全基因组序列分析及其对低聚果糖代谢通路的解析[D].无锡:江南大学, 2014.
CHEN C.Characterization of the complete genome sequence of Lactobacillus plantarum ST III and its pathways for fructooligosaccharides metabolism[D].Wuxi: Jiangnan University, 2014.
[9] BURON-MOLES G, CHAILYAN A, DOLEJS I, et al.Uncovering carbohydrate metabolism through a genotype-phenotype association study of 56 lactic acid bacteria genomes[J].Applied Microbiology and Biotechnology, 2019, 103(7):3 135-3 152.
[10] 张飞, 岳田利, 费坚, 等.果胶酶活力的测定方法研究[J].西北农业学报, 2004(4):134-137.
ZHANG F, YUE T L, FEI J, et al.Research on measuring method of PG activity[J].Acta Agriculturae Boreali-occidentalis Sinica, 2004(4):134-137.
[11] 马江山. 解析内生细菌Pantoea ananatis Sd-1的木质纤维素降解体系研究[D].长沙:湖南大学, 2016.
MA J S.Analysis of the lignocellulose degradation system in endophytic bacterium Pantoea ananatis Sd-1[D].Changsha:Hunan University.2016.
[12] 何海燕, 覃拥灵, 陆世则, 等.产果胶酶棘孢曲霉的筛选鉴定及微波诱变育种[J].中国饲料, 2015(2):20-22.
HE H Y, QIN Y L, LU S Z, et al.Screening, identification and microwave mutation breeding of Aspergillus aculeatus of producing pectinase[J].China Feed, 2015(2):20-22.
[13] LUO R B, LIU B H, XIE Y L, et al.Soapdenovo2:An empirically improved memory-efficient short-read de novo assembler[J].GigaScience, 2012, 1(1):18-18.
[14] DELCHER A L, BRATKE K A, POWERS E C, et al.Identifying bacterial genes and endosymbiont DNA with glimmer[J].Bioinformatics, 2007, 23(6):673-679.
[15] BESEMER J, BORODOVSKY M.Genemark:Web software for gene finding in prokaryotes, eukaryotes and viruses[J].Nucleic Acids Research, 2005, 33(Web Server issue):451-454.
[16] LOMBARD V, GOLACONDA R H, DRULA E, et al.The carbohydrate-active enzymes database (cazy) in 2013[J].Nucleic Acids Research, 2014, 42(Database issue):490-495.
[17] SÁNCHEZ C.Lignocellulosic residues:Biodegradation and bioconversion by fungi[J].Biotechnology Advances, 2009, 27(2):185-194.
[18] TANIZAWA Y, TOHNO M, KAMINUMA E, et al.Complete genome sequence and analysis of Lactobacillus hokkaidonensis LOOC260(T), a psychrotrophic lactic acid bacterium isolated from silage[J].Bmc Genomics, 2015, 16:240.
[19] 陈凯莉, 许轲, 张贤聪, 等.果实中果胶代谢相关酶基因的研究进展[J].园艺学报, 2017, 44(10):2 008-2 014.
CHEN K L, XU K, ZHANG X C, et al.Advances in genes information involved in pectin metabolism in fruit[J].Acta Horticulturae Sinica, 2017, 44(10):2 008-2 014.
[20] SINGH A, ADSUL M, VAISHNAV N, et al.Improved cellulase production by Penicillium janthinellum mutant[J].Indian Journal of Experimental Biology, 2017, 55(7):436-440.
[21] 安晓娜, 李伟程, 于洁, 等.比较基因组学分析不同来源罗伊氏乳杆菌基因多样性及生境适应性[J].微生物学报, 2020, 60(5):875-886.
AN X N, LI W C, YU J, et al.Comparative genomics analysis of genetic diversity and habitat adaptability of Lactobacillus reuteri from different sources[J].Acta Microbiologica Sinica, 2020, 60(5):875-886.
[22] 张鹏飞. 胡萝卜软腐果胶杆菌致病关键基因eda的功能研究[D].南京:南京农业大学, 2015.
ZHANG P F.Functional analysis of eda, a crucial gene to pathogenicity of Pectobacterium carotovorum subsp.Carotovorum[D].Nanjing:Nanjing Agricultural University, 2015.
[1] 马申嫣, 王晶, 赵岩, 曹江, 翟齐啸, 张灏, 赵建新, 田丰伟, 陈卫. 以巧克力为载体的益生菌膳食补充剂的开发[J]. 食品与发酵工业, 2021, 47(9): 143-148.
[2] 张恕铭, 曾林, 孙向阳, 汪杰, 孙擎, 张庆, 谭霄. 屎肠球菌与植物乳杆菌共培养产γ-氨基丁酸条件优化及关键酶活性研究[J]. 食品与发酵工业, 2021, 47(9): 154-159.
[3] 周雯, 庄蕾, 吴森. 植物多糖在Ⅱ型糖尿病降血糖作用方面的研究进展[J]. 食品与发酵工业, 2021, 47(8): 290-296.
[4] 刘婷, 周欣, 赵超, 龚小见, 陈华国. 植物多糖对肾损伤干预效果及作用机制研究进展[J]. 食品与发酵工业, 2021, 47(7): 269-277.
[5] 孙媛媛, 崔树茂, 唐鑫, 毛丙永, 赵建新, 陈卫. 发酵乳杆菌的生长限制性因素分析及高密度培养工艺优化[J]. 食品与发酵工业, 2021, 47(6): 1-10.
[6] 孔庆敏, 朱慧越, 田培郡, 赵建新, 张灏, 陈卫, 王刚. 嗜酸乳杆菌La28对丙戊酸暴露引起的子代大鼠外周炎症和肝损伤的缓解作用[J]. 食品与发酵工业, 2021, 47(1): 125-131.
[7] 董晨阳, 张红星, 贾宇, 谢远红, 刘慧, 金君华. 唾液乳杆菌M18-6体外抗氧化功能评价及其机制探讨[J]. 食品与发酵工业, 2021, 47(1): 132-137.
[8] 易鑫, 周琦, 欧阳祝, 谈安群, 范佳莹, 李则灵, 朱霞建, 黄林华, 李贵杰, 王华. 乳酸菌富硒优化及其活性评价[J]. 食品与发酵工业, 2020, 46(8): 179-186.
[9] 陈嘉琪, 崔树茂, 唐鑫, 刘小鸣, 赵建新, 陈卫. 德式乳杆菌保加利亚亚种的乳清蛋白利用能力比较[J]. 食品与发酵工业, 2020, 46(7): 28-34.
[10] 胡畔, 杨萍, 郭天时. 植物乳杆菌与米根霉混合固态发酵改善玉米粉理化加工特性[J]. 食品与发酵工业, 2020, 46(7): 161-166.
[11] 金星, 贺禹丰, 周永华, 陈晓华, 王刚, 赵建新, 张灏, 陈卫. 唾液乳杆菌CCFM 1054通过改变肠道菌群缓解空肠弯曲杆菌在小鼠体内的感染[J]. 食品与发酵工业, 2020, 46(5): 1-8.
[12] 徐玉巧, 王金华, 熊智, 范方宇. 复凝聚法鼠李糖乳杆菌微胶囊工艺优化及储藏稳定性[J]. 食品与发酵工业, 2020, 46(5): 194-199.
[13] 谭莎莎,马方励,崔树茂,毛丙永,唐鑫,赵建新,张灏,陈卫. 罗伊氏乳杆菌冻干保护剂的优选及高密度冻干工艺优化[J]. 食品与发酵工业, 2020, 46(4): 1-6.
[14] 王玉林, 黄洁, 崔树茂, 唐鑫, 毛丙永, 赵建新, 张灏, 陈卫. 植物乳杆菌最适生长底物解析及高密度培养工艺[J]. 食品与发酵工业, 2020, 46(4): 19-27.
[15] 刘江, 程群, 王振兴, 孙健, 何雪梅, 刘大群, 周贵七, 熊智, 张雪春. 云南乳饼中乳酸菌的筛选及其功能活性[J]. 食品与发酵工业, 2020, 46(4): 160-166.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn