Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (3): 128-134    DOI: 10.13995/j.cnki.11-1802/ts.025097
  生产与科研应用 本期目录 | 过刊浏览 | 高级检索 |
响应面法优化超声辅助提取韭菜根不溶性膳食纤维
李琦1, 曾凡坤1*, 华蓉2, 王继飞2
1(西南大学 食品科学学院,重庆,400715)
2(贵州省安顺市普定县农业农村局,贵州 普定,562100)
Optimization of ultrasound-assisted extraction of insoluble dietary fiber from chive roots by response surface method
LI Qi1, ZENG Fankun1*, HUA Rong2, WANG Jifei2
1(College of Food Science, Southwest University, Chongqing 400715, China)
2(Agriculture and Rural Bureau, Guizhou 562100, China)
下载:  HTML   PDF (4381KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以韭菜根为原料,用超声处理法辅助提取韭菜根不溶性膳食纤维(insoluble dietary fiber,IDF),探讨液料比、超声温度、超声功率强度和超声时间对IDF得率的影响;用Box-Behnken中心组合原理建立数学模型,通过响应面优化提取工艺参数;最后进行红外光谱分析、热重分析和扫描电镜观察。最佳提取工艺为:液料比25 mL/g,超声温度56 ℃,超声时间48 min、超声功率强度60%,在此条件下得率达32.92%,与理论值33.87%相比,相对误差2.80%;IDF持水力为11.90 g/g,膨胀性8.23 mL/g,持油力7.63 g/g;韭菜根IDF化学组成具有典型膳食纤维特性,热稳定性良好且具有典型网状结构。以上结果表明,韭菜根是优质膳食纤维的良好来源,通过响应面优化可有效提高IDF得率,该研究将为韭菜根IDF的提取、改良和推广应用提供数据支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李琦
曾凡坤
华蓉
王继飞
关键词:  韭菜根  不溶性膳食纤维  超声波  响应面法    
Abstract: The insoluble dietary fiber (IDF) was extracted from chive root by ultrasound-assisted treatment, and the effects of solid-liquid ratio, ultrasonic temperature, ultrasonic power intensity and ultrasonic time on IDF yield were discussed. Then the Box-Behnken central combination principle was used to establish a mathematical model and the parameters of extraction was optimized by response surface design. Finally, the physical and chemical property detection, infrared spectrum analysis, thermogravimetric analysis and scanning electron microscope observation of IDF from chive root were explored. The results showed that the best extraction process was as follows: the ratio of liquid to material was 25 mL/g and the ultrasonic temperature at 56 ℃ for 48 min with 60% of ultrasonic power intensity. So the yield reached 32.92% under the optimal condition, and the relative error was 2.80% compared with the theoretical value of 33.87%. Moreover, the water holding capacity, swelling capacity and oil holding capacity of IDF from chive root were 11.90 g/g, 8.23 mL/g and 7.63 g/g, respectively. With good stability and typical network structure, the IDF from chive root has the typical dietary fiber properties. These results showed that chive root was a good source of high-quality dietary fiber, and it's effective to us response surface optimization to improve the yield of IDF. This study provides basis for the extraction, improvement, and application of IDF from chive root.
Key words:  chive root    insoluble dietary fiber    ultrasonic    response surface method
收稿日期:  2020-07-19      修回日期:  2020-08-18           出版日期:  2021-02-15      发布日期:  2021-03-08      期的出版日期:  2021-02-15
基金资助: 贵州省普定县韭黄加工技术开发项目(4412000031)
作者简介:  本科生(曾凡坤教授为通讯作者,E-mail:zengfankun@swu.edu.cn)
引用本文:    
李琦,曾凡坤,华蓉,等. 响应面法优化超声辅助提取韭菜根不溶性膳食纤维[J]. 食品与发酵工业, 2021, 47(3): 128-134.
LI Qi,ZENG Fankun,HUA Rong,et al. Optimization of ultrasound-assisted extraction of insoluble dietary fiber from chive roots by response surface method[J]. Food and Fermentation Industries, 2021, 47(3): 128-134.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025097  或          http://sf1970.cnif.cn/CN/Y2021/V47/I3/128
[1] 方云山. 藓叶卷瓣兰、芳香石豆兰和韭菜根的化学成分研究[D].昆明:云南大学,2016.
FANG Y S.Studies on the chemical constiuents of B.retusiusculum,B.ambrosia and the roots of A.tuberosum[D].Kunming:Yunnan University,2016.
[2] 周航,刘利,薛菲.腌韭菜根的营养价值及韭菜根开发应用研究[J].中国调味品,2017,42(9):173-176.
ZHOU H,LIU L,XUE F.The nutritional value of pickled Allium hookeri Thwaites root and the development and application research on Allium hookeri Thwaites root[J].China Condiment,2017,42(9):173-176.
[3] 王绍先,吴兴祥.开发“韭菜根”带富众乡亲[J].农产品加工,2012(9):52-53.
WANG S X,WU X X.Develop “chive roots” to enrich the folks[J].Farm Products Processing,2012(9):52-53.
[4] MONTAGNE L,PLUSKE J R,HAMPSON D J.A review of interactions between dietary fiber and the intestinal mucosa,and their consequences on digestive health in young non-ruminant animals[J].Animal Feed Science & Technology,2003,108(1):95-117.
[5] DAI F J,CHAU C F.Classification and regulatory perspectives of dietary fiber[J].Journal of Food and Drug Analysis,2017,25(1):37-42.
[6] 李琦,曾凡坤,华蓉,等.麦麸膳食纤维理化特性、制备方法及应用研究进展[J].食品工业科技,2020,41(17):352-357;367.
LI Q,ZENG F K,HUA R,et al.Research progress on the physicochemical properties,preparation methods and application of wheat bran dietary fiber[J].Science and Technology of Food Industry,2020,41(17):352-357;367.
[7] ANDERSON J W,BAIRD P,DAVIS R H,et al.Health benefits of dietary fiber[J].Nutrition Reviews,2009,67(4):188-205.
[8] TALUKDER S,SHARMA D P.Development of dietary fiber rich chicken meat patties using wheat and oat bran[J].Journal of Food Science and Technology,2010,47(2):224-229.
[9] 陶春生,陈存社,王克俭.挤压改性麦麸膳食纤维对面条品质的影响[J].食品科技,2017,42(9):132-136.
TAO C S,CHEN C S,WANG K J.Effects of extrusion modification of wheat bran dietary fiber on quality of noodle[J].Food Science and Technology,2017,42(9):132-136.
[10] 吴卫国,王金发.麦麸纤维保健型花生饮料的研制[J].食品工业,2000(2):21-23.
WU W G,WANG J F.Development of wheat bran fiber health-care peanut beverage[J].The Food Industry,2000(2):21-23.
[11] 雷登凤. 生姜中膳食纤维的提取及改性研究[D].贵阳:贵州大学,2015.
LEI D F.Study on the extraction and modification of ginger dietary fiber[D].Guiyang:Guizhou University,2015.
[12] 郭东辉,刘四新,李从发.腰果梨渣不溶性膳食纤维的提取[J].食品工业科技,2008,29(11):166-167;170.
GUO D H,LIU S X,LI C F.Extraction of insoluble dietary fiber from cashew apple dregs[J].Science and Technology of Food Industry,2008,29(11):166-167;170.
[13] RUPEREZ P,SAURA—CALIXTO F.Dietary fiber and physicochernical properties of edible Spanish[J].Eur Food Res Technol,2001,212(3):349-354.
[14] SANGNARK A,NOOMHORM A.Effect of particle sizes on functional properties of dietary fiber prepared from sugarcane bagass[J].Food Chemistry,2003,80:221-229.
[15] 程明明. 西番莲果皮水不溶性膳食纤维提取、改性及功能特性研究[D].广州:华南农业大学,2016.
CHENG M M.Study on extraction,modified and functional features of dietary fiber from passiflora edulis rind[D].Guangzhou:South China Agricultural University,2016.
[16] 杨妍.石榴皮渣(籽)膳食纤维制备与降脂功能研究[D].北京:中国农业科学院,2018.
YANG Y.Preparation of dietary fiber from pomegranate marcs(seed) and its antiobesity function[D].Beijing:Chinese Academy of Agricultural Sciences,2018.
[17] 唐小闲,邱培生,段振华,等.响应面法优化超声-微波辅助提取莲藕膳食纤维工艺研究[J].食品研究与开发,2019,40(6):132-139.
TANG X X,QIU P S,DUAN Z H,et al.Optimization of ultrasonic-microwave assisted extraction of dietary fiber from lotus root by respons surface methodology[J].Food Research and Development,2019,40(6):132-139.
[18] 程海涛,申献双.响应面优化超声波-微波协同提取葡萄籽原花青素工艺研究[J].中国油脂,2018,43(3):156-160.
CHEN H T,SHEN X S.Optimization of ultrasound-microwave-assisted extraction of proanthocyanidin from grape seeds by response surface methodology[J].China Oils and Fats,2018,43(3):156-160.
[19] 朱妞.微生物发酵法改性苹果渣膳食纤维理化特性分析[J].中国调味品,2020,45(6):88-91.
ZHU N.Analysis of physicochemical properties of apple pomace dietary fiber modified by microbial fermentation method[J].China Condiment,2020,45(6):88-91.
[20] 马斌,罗延丽,王永康,等.蒜黄根膳食纤维提取工艺优化及其理化性质分析[J/OL].食品工业科技:1-10[2020-06-29].http://kns.cnki.net/kcms/detail/11.1759.TS.20200603.1517.013.html.
MA B,LUO Y L,WANG Y K,et al.Optimization of extraction conditions of dietaryfiber from the root of blanched garlic leaves and its physicochemical properties analysis[J/OL].Science and Technology of Food Industry:1-10[2020-06-29].http://kns.cnki.net/kcms/detail/11.1759.TS.20200603.1517.013.html.
[21] 魏玉梅,哈斯其美格,刘华.响应面优化双酶法提取马铃薯渣膳食纤维工艺[J].食品与发酵科技,2020,56(2):33-39.
WEI Y M,HA S Q M G,LIU H.Response surface methodology optimize the extraction of the dietary fiber from potato residue by double-enzymatic method[J].Food and Fermentation Technology,2020,56(2):33-39.
[22] 刘学成,王文亮,黄泽天,等.茶树菇膳食纤维的提取工艺优化[J].中国酿造,2020,39(5):183-188.
LIU X C,WANG W L,HUANG Z T,et al.Optimization of extraction technology of dietary fiber from Agrocybe aegerita[J].China Brewing,2020,39(5):183-188.
[23] 朱妞,吴丽萍.花生壳膳食纤维理化特性研究[J].粮食与油脂,2014,27(2):38-41.
ZHU N,WU L P.Study on physical and chemical properties of peanut DF[J].Cereals and Oils,2014,27(2):38-41.
[24] CHEN H M,FU X,LUO,Z G.Properties and extraction of pectin-enriched materials from sugar beet pulp by ultrasonic-assisted treatment combined with subcritical water[J].Food Chemistry,2015,168:302-310.
[25] 周丽珍,孙海燕,刘冬,等.改性方法对豆渣膳食纤维的结构影响研究[J].食品科技,2011,36(1):143-147.
ZHOU L Z,SUN H Y,LIU D,et al.Influence of modification methods on the structure of dietary fiber from soybean residue[J].Food Science and Technology,2011,36(1):143-147.
[26] 阮之阳. 酶—超声联合处理植物废渣制备膳食纤维及其生物活性研究[D].广州:华南理工大学,2018.
RUAN Z Y.Preparation of dietary fiber from plant wastes by combined enzyme-ultrasound treatment and their bioactivities[D].Guangzhou:South China University of Technology,2018.
[27] 郭翠翠. 甜荞麦皮粉膳食纤维的制备及其物化特性研究[D].西安:陕西科技大学,2013.
GUO C C.Study on preparation and physicochemical characteristics of dietary fiber from buckwheat bran[D].Xi'an:Shaanxi University of Science & Technology,2013.
[28] 徐学玲. 大豆膳食纤维的超声提取及性质研究[D].合肥:合肥工业大学,2010.
XUX X L.Studies on the ultrasound-assisted extraction and characteristic of soybean dietary fiber[D].Hefei:Hefei University of Technology,2010.
[29] 廖艳芬,王树荣,骆仲泱,等.纤维素热裂解过程动力学的试验分析研究[J].浙江大学学报(工学版),2002(2):60-64;77.
LIAO Y F,WANG S R,LUO Z Y,et al.Research on cellulose pyrolysis kinetics[J].Journal of Zhejiang University Engineering Science,2002(2):60-64;77.
[1] 符群, 郐滨, 钟明旭, 吴小杰. 超声波辅助酶解法提取北虫草菌素及其降血糖活性研究[J]. 食品与发酵工业, 2021, 47(9): 120-127.
[2] 李云嵌, 杨曦, 刘江, 吴娟, 王振兴, 张雪春. 超声波辅助碱法提取美藤果分离蛋白及其加工性质研究[J]. 食品与发酵工业, 2021, 47(9): 128-135.
[3] 王子涵, 向敏, 徐茂, 蒋和体. 响应面优化黑果腺肋花楸汁澄清工艺及其抗氧化活性评价[J]. 食品与发酵工业, 2021, 47(8): 189-196.
[4] 赵颖颖, 李三影, 田金凤, 扶磊, 贾丰鲜, 李可, 吴丽丽, 白艳红. 超声波对不同盐浓度下肌原纤维蛋白溶解性的影响[J]. 食品与发酵工业, 2021, 47(7): 197-202.
[5] 孙聿尧, 谢晶, 王金锋. 超声波解冻与传统解冻方式的比较与竞争力评估[J]. 食品与发酵工业, 2021, 47(6): 253-258.
[6] 杨燕敏, 郑振佳, 高琳, 张砚垒, 张仁堂. 红枣多糖超声波提取、结构表征及抗氧化活性评价[J]. 食品与发酵工业, 2021, 47(5): 120-126.
[7] 牟方婷, 袁美, 石黎琳, 曾凡坤, 陈嘉, 张玉. 超声和微波辅助果胶酶处理对果胶结构的影响[J]. 食品与发酵工业, 2021, 47(4): 215-221.
[8] 陈致印, 刘伟鹏, 王盈希, 曾立, 向国红, 刘桃李, 龚意辉. 三种不同改性方法对甘薯渣不溶性膳食纤维改性效果的研究[J]. 食品与发酵工业, 2021, 47(2): 57-62.
[9] 赵紫悦, 张伊侬, 彭松林, 李懿璇, 康梦瑶, 尚永彪. 超声波处理对大豆油预乳化效果的影响[J]. 食品与发酵工业, 2021, 47(2): 167-173.
[10] 王浩宇, 刘肖, 赵珠莲, 周才琼. 超声波预处理结合控温控湿发酵对黑蒜色变及风味品质的影响[J]. 食品与发酵工业, 2021, 47(19): 221-229.
[11] 蔡燕, 严鑫, 朱镇东, 陈婷婷, 陈娇. 超声波辅助豆粕一锅法合成氢过氧化亚油酸[J]. 食品与发酵工业, 2021, 47(17): 156-160.
[12] 许英瑞, 朱妍丽, 薛元泰, 张卫兵, 杨晓丽, 张炎, 马瑞娟, 王莹, 文鹏程. 黑枸杞多糖的提取及其对副干酪乳杆菌L9、嗜热链球菌G2生长特性及抗氧化能力的影响[J]. 食品与发酵工业, 2021, 47(17): 179-185.
[13] 刘二蒙, 冯拓, 高献礼, 符姜燕, 林虹, 徐婷, 马海乐, 单培. 超声波加速液态发酵食品风味成熟研究进展[J]. 食品与发酵工业, 2021, 47(17): 283-289.
[14] 张琴, 李美东, 张子木, 黄秀芳, 周毅峰, 罗凯. 壶瓶碎米荠多糖提取动力学模型研究[J]. 食品与发酵工业, 2021, 47(14): 31-37.
[15] 郭杰, 陶蕾, 王吉鸿, 王瑞雪. 响应面试验优化超声波辅助双水相提取蕨麻多糖[J]. 食品与发酵工业, 2021, 47(14): 151-159.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn