Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (2): 57-62    DOI: 10.13995/j.cnki.11-1802/ts.025112
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
三种不同改性方法对甘薯渣不溶性膳食纤维改性效果的研究
陈致印1, 刘伟鹏1, 王盈希2, 曾立3, 向国红1, 刘桃李1, 龚意辉1*
1(湖南人文科技学院 农业与生物技术学院,湖南 娄底,417000)
2(长沙理工大学 化学与食品工程学院,湖南 长沙,410114)
3(邵阳学院 药学院,湖南 邵阳,422000)
Study of three different modification methods on insoluble dietary fiber in sweet potato residue
CHEN Zhiyin1, LIU Weipeng1, WANG Yingxi2, ZENG Li3, XIANG Guohong1, LIU Taoli1, GONG Yihui1*
1(College of Agriculture and Biotechnology,Hunan University of Humanities,Science and Technology,Loudi 417000,China)
2(School of Chemistry and Food Engineering,Changsha University of Science & Technology,Changsha 410114,China)
3(School of Pharmacy,Shaoyang University,Shaoyang 422000,China)
下载:  HTML   PDF (6021KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 该研究采用胶体磨湿法粉碎法、超声波辅助酸法、纤维素酶法3种方法处理甘薯渣不溶性膳食纤维(insoluble dietary fiber,IDF),比较改性前后IDF粒径分布、微观形态,并测定分析其理化性质。结果表明,与未改性甘薯渣IDF相比,3种改性方法改性之后,甘薯渣IDF的粒径、分散指数显著降低(P<0.01),持油力、持水力存在显著差异(P<0.01),吸附亚硝酸盐及胆固醇能力都有不同程度的提升。整体而言,这3种改性方法对甘薯渣IDF改性都有效果,并且胶体磨湿法粉碎法改性对甘薯渣IDF的持油力、持水力、吸附亚硝酸盐及胆固醇能力效果最好。甘薯渣改性的IDF可作为功能性成分应用于多种食品。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈致印
刘伟鹏
王盈希
曾立
向国红
刘桃李
龚意辉
关键词:  不溶性膳食纤维  胶体磨湿法粉碎法  超声波辅助酸法  纤维素酶法    
Abstract: The present paper aimed to study the effect of modification methods on the structural and physicochemical properties of insoluble dietary fiber (IDF) from sweet potato residue.The insoluble dietary fiber of sweet potato residue was modified via colloid wet grinding technology,ultrasonic assisted acid method and cellulase enzymatic method.Particle size distribution and morphology of insoluble dietary fiber before and after modification were compared.Results showed that the particle size distribution of IDF from sweet potato residue was significantly decreased by the three modification methods (P<0.01).The water holding capacity and oil absorption capacity were significantly changed (P<0.01),while the nitrite and cholesterol adsorption capacity of IDF were improved by these three methods.In summary,colloid wet grinding technology had the best effects on oil absorption,water holding capacity,nitrite and cholesterol adsorption of IDF from sweet potato residue.Modified IDF from sweet potato residue could be applied as a functional ingredient in diverse food products.
Key words:  insoluble dietary fiber    colloid wet grinding technology    ultrasonic assisted acid method    cellulase enzymatic method
收稿日期:  2020-07-20      修回日期:  2020-08-21           出版日期:  2021-01-25      发布日期:  2021-02-07      期的出版日期:  2021-01-25
基金资助: 文旅部“双师型”师资培养课题(WLRCS2019-032);湖南省教育厅创新创业教育中心(湘教通〔2019〕333号);湖南省教育厅教改项目(湘教通〔2019〕291号);湖南省教育厅新农科研究与改革实践项目(湘教通〔2020〕94号);教育部协同育人项目(201901128002)(201902078028);湖南省自然科学基金(2020JJ5270);湖南省科技创新计划(2020RC1014);湖南省教育厅科研项目(17C0818);校级教改(校教通〔2019〕90号RKJGZ1944)联合资助
作者简介:  博士,副教授(龚意辉讲师为通讯作者,E-mail:907653797@qq.com)
引用本文:    
陈致印,刘伟鹏,王盈希,等. 三种不同改性方法对甘薯渣不溶性膳食纤维改性效果的研究[J]. 食品与发酵工业, 2021, 47(2): 57-62.
CHEN Zhiyin,LIU Weipeng,WANG Yingxi,et al. Study of three different modification methods on insoluble dietary fiber in sweet potato residue[J]. Food and Fermentation Industries, 2021, 47(2): 57-62.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025112  或          http://sf1970.cnif.cn/CN/Y2021/V47/I2/57
[1] 周增学.红薯的营养价值与保健功能[J].食品与药品,2006,8(8):75-76.
ZHOU Z X.Nutritional value and health care function of sweet potato[J].Food and Drug,2006,8(8):75-76.
[2] MOHANRAJ R,SIVASANKAR S.Sweet potato (Ipomoea batatas[L.] Lam)-a valuable medicinal food:A review[J].Journal of Medicinal Food,2014,17(7):733-741.
[3] 吴广辉,毕韬韬.红薯营养价值及综合开发利用研究进展[J].食品研究与开发,2015,36(20):189-192.
WU G H,BI T T.Nutritional value and comprehensive development and utilization of sweet potato[J].Food Research And Development,2015,36(20):189-192.
[4] WANG T,LIANG X,RAN J,et al.Response surface methodology for optimisation of soluble dietary fibre extraction from sweet potato residue modified by steam explosion[J].International Journal of Food Science &Technology,2017,52(3):741-747.
[5] 乔汉桢,刘佳琪,许雯雯,等.甘薯渣膳食纤维的制备及改性工艺研究进展[J].饲料研究,2019(7):89-94.
QIAO H Z,LIU J Q,XU W W,et al.Preparation and modification of dietary fiber from sweet potato residues[J].Feed Research,2019(7):89-94.
[6] 龚娣,陈程莉,常馨月,等.竹笋膳食纤维的改性研究进展[J].中国食品添加剂,2020(1):172-178.
GONG D,CHEN C L,CHANG X Y,et al.Research progress on modification of bamboo shoot dietary fiber[J].China Food Additives,2020(1):172-178.
[7] 单成俊,周剑忠,黄开红,等.挤压膨化提高甘薯渣中可溶性膳食纤维含量的研究[J].江西农业学报,2009(6):90-91.
SHAN C J,ZHOU J Z,HUANG K H,et al.Study on extrusion technology for increase of soluble dietary fiber content in sweet potato residues[J].Acta Agriculturae Jiangxi,2009(6):90-91.
[8] LI X P,WEI Z M,ZHANG W,et al.Study on preparation of soluble dietary fiber of sweet potato with cellulase[J].Science and Technology of Food Industry,2011,32(11):198-201.
[9] 梅新,木泰华,陈学玲,等.超微粉碎对甘薯膳食纤维成分及物化特性影响[J].中国粮油学报,2014(2):76-81.
MEI X,MU T H,CHEN X L,et al.Effect of micronization on composition and physicochemical properties of sweet potato dietary fiber[J].Journal of the Chinese Cereals and Oils Association,2014(2):76-81.
[10] 赵仕婷,木泰华,郭亚姿,等.两种超微粉碎方法对甘薯膳食纤维物化功能特性影响的比较研究[J].食品工业科技,2014(15):101-106.
ZHAO S T,MU T H,GUO Y Z,et al.The effect of two different ultrafine grinding methods on physicochemical and functional properties of sweet potato dietary fiber[J].Science and Technology of Food Industry,2014(15):101-106.
[11] WANG T,LIANG X,RAN J,et al.Response surface methodology for optimisation of soluble dietary fibre extraction from sweet potato residue modified by steam explosion[J].International Journal of Food Science &Technology,2017,52(3):741-747.
[12] 薛山.紫薯不溶性膳食纤维超声辅助酶法提取工艺及抗氧化活性研究[J].食品与机械,2018,34(5):153-163.
XUE S.Extraction of insoluble dietary fiber from purple sweet potato by ultrasonic assisted enzyme method and the determination of its hydroxyl radical scavenging ability[J].Food and Machinery,2018,34(5):153-163.
[13] SONG Y,SU W,MU Y C.Modification of bamboo shoot dietary fiber by extrusion-cellulase technology and its properties[J].International Journal of Food Properties,2018,21(1):1 219-1 232.
[14] WANG L,XU H,YUAN F,et al.Preparation and physicochemical properties of soluble dietary fiber from orange peel assisted by steam explosion and dilute acid soaking[J].Food Chemistry,2015,185:90-98.
[15] 张阳德.纳米生物技术学[M].第二版.北京:科学出版社,2009:271-279.
ZHANG Y D.Nanotechnology[M].Second Edition.:Beijing:Science Press,2009:271-279.
[16] HAYASHI N,KONDO T,ISHIHARA M.Enzymatically produced nano-ordered short elements containing cellulose Iβ crystalline domains[J].Carbohydrate Polymers,2005,61(2):191-197.
[17] 程力,张献梅,顾正彪,等.纤维素酶法制备马铃薯渣可溶性膳食纤维的理化及功能性质[J].食品与发酵工业,2015,41(11):11-16.
CHENG L,ZHANG X M,GU Z B,et al.Research on physicochemical and functional properties of solubledietary fiber from cellulase modified potato pulp[J].Food and Fermentation Industries,2015,41(11):11-16.
[18] 胡筱,潘浪,朱平平,等.超声波改性对葵花粕膳食纤维性质与结构的影响[J].中国食品学报,2019,19(11):88-99.
HU X,PAN L,ZHU P P,et al.Effects of ultrasonic modification on the properties and structure of dietary fiber in sunflower meal[J].Journal of Chinese Institute of Food Science and Technology,2019,19(11):88-99.
[19] YU G,BEI J,ZHAO J,et al.Modification of carrot (Daucus carota Linn.var.Sativa Hoffm.) pomace insoluble dietary fiber with complex enzyme method,ultrafine comminution,and high hydrostatic pressure[J].Food Chemistry,2018,257:333-340.
[20] 丁莎莎,黄立新,张彩虹,等.高压均质和胶体磨改性对油橄榄果渣水不溶性膳食纤维性能的影响[J].食品与机械,2017,33(8):10-13.
DING S S,HUANG L X,ZHANG C H,et al.Effect of high pressure homogenization and colloid mill modification on the physicochemical properties of insoluble dietary fiber from olive pomace[J].Food and Machinery,2017,33(8):10-13.
[21] 叶秋萍,曾新萍,郑晓倩.膳食纤维的制备技术及理化性能的研究进展[J].食品研究与开发,2019,49(17):212-217.
YE Q P,ZENG X P,ZHENG X Q.Research progress on preparation technology and physicochemical properties of dietary fiber[J].Food Research and Development,2019,49(17):212-217.
[22] 程明明,黄苇.两种超微粉碎法对西番莲果皮水不溶性膳食纤维改性效果的研究[J].现代食品科技,2016,32(12):247-253.
CHENG M M,HUANG W.Effect of superfine pulverization treatment on the physicochemical properties of insoluble dietary fiber from passiflora edulis rind[J].Modern Food Science and Technology,2016,32(12):247-253.
[23] 张艳,何翠,刘玉凌,等.超声波改性对方竹笋膳食纤维性能和结构的影响[J].食品与发酵工业,2017,43(1):150-155.
ZHANG Y,HE C,LIU Y L,et al.Effect of ultrasound on physicochemical properties and structure of chimonobambusa dietary fibre[J].Food and Fermentation Industries,2017,43(1):150-155.
[24] NAWIRSKA A,KWAS′NIEWSKA M.Dietary fibre fractions from fruit and vegetable processing waste[J].Food Chemistry,2005,91(2):221-225.
[25] 刘静娜,庄远红.盐酸改性西瓜皮不溶性膳食纤维对亚硝酸盐的吸附作用[J].食品科学技术学报,2019,37(4):72-78.
LIU J N,ZHUANG Y H.Adsorption of nitrite by hydrochloric acid modified insoluble dietary fiber in watermelon peel[J].Journal of Food Science and Technology,2019,37(4):72-78.
[1] 李琦, 曾凡坤, 华蓉, 王继飞. 响应面法优化超声辅助提取韭菜根不溶性膳食纤维[J]. 食品与发酵工业, 2021, 47(3): 128-134.
[2] 何晓琴, 李苇舟, 夏晓霞, 雷琳, 赵吉春, 明建. 蒸汽爆破预处理的苦荞麸皮不溶性膳食纤维理化特性及结构研究[J]. 食品与发酵工业, 2020, 46(18): 47-53.
[3] 王贲香, 贺阳, 蒋海芹, 文连奎. 大豆不溶性膳食纤维体外发酵产短链脂肪酸的研究[J]. 食品与发酵工业, 2020, 46(11): 138-145.
[4] 代曜伊,毕家钰,田巧玲,郑炯. 竹笋不溶性膳食纤维对大豆蛋白凝胶性质的影响[J]. 食品与发酵工业, 2017, 43(6): 104-.
[5] 代曜伊,刘敏,郑炯. 竹笋不溶性膳食纤维对草莓果酱流变及质构特性的影响[J]. 食品与发酵工业, 2017, 43(3): 83-.
[6] 周玉瑾,李梦琴,李超然,刘燕琪. 麦麸水溶性膳食纤维和水不溶性膳食纤维对面条性状指标的影响及其扫描电镜的观察[J]. 食品与发酵工业, 2015, 41(6): 128-.
[7] 陈仕学,胡明念,鲁道旺,李刚凤,谭沙,杨俊. 野生阳荷水不溶性膳食纤维的提取及性能测定[J]. 食品与发酵工业, 2014, 40(01): 250-253.
[8] 罗章,孙术国,方军,黄群,次仁曲吉,洛桑曲培,达瓦泽仁. 杨梅渣膳食纤维提取工艺[J]. 食品与发酵工业, 2011, 37(03): 215-219.
[9] 汪靖超,杨宏,姚海军,杜桂彩. 利用辣椒渣提取不溶性膳食纤维的研究[J]. 食品与发酵工业, 2006, 32(4): 130-.
[10] 郝林华,陈靠山,李光友,周兴无. 利用牛蒡渣提取高活性膳食纤维的工艺[J]. 食品与发酵工业, 2003, 29(4): 41-.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn