Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (3): 36-42    DOI: 10.13995/j.cnki.11-1802/ts.025193
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
霉豆渣细菌多样性解析及基因功能预测
尚雪娇, 方三胜, 朱媛媛, 赵慧君, 郭壮*
湖北文理学院 食品科学技术学院,鄂西北传统发酵食品研究所,湖北 襄阳,441053
Bacterial diversity and prediction of gene function in Meitauza
SHANG Xuejiao, FANG Sansheng, ZHU Yuanyuan, ZHAO Huijun, GUO Zhuang*
Northwest Hubei Research Institute of Traditional Fermented Food, College of Food Science and Technology, Hubei University of Arts and Science, Xiangyang 441053, China
下载:  HTML   PDF (1908KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用高通量测序技术解析霉豆渣中细菌多样性,通过PICRUSt软件进一步对细菌类群的基因功能进行了预测。结果发现:霉豆渣中细菌主要隶属于Proteobacteria(变形菌门,46.50%)、Firmicutes(硬壁菌门,38.80%)、Bacteroidetes(拟杆菌门,12.62%)和Actinobacteria(放线菌门,1.81%);优势菌属分别为Acinetobacter(不动杆菌属,17.27%)、Pseudomonas(假单胞菌属,10.38%)、Brevundimonas(短波单胞菌属,4.03%)、Stenotrophomonas(寡养单胞菌属,3.05%)、Comamonas(丛毛单胞菌属,2.52%),Enterococcus(肠球菌属,1.09%)、Bacillus(芽孢杆菌属,11.60%)、Brevibacillus(短芽孢杆菌属,2.41%)、Lysinibacillus(赖氨酸芽胞杆菌属,21.15%),Wautersiella(沃特氏菌属,8.68%)、Sphingobacterium(鞘氨醇杆菌属,2.17%)和Nocardia(诺片氏菌属,1.36%);有8 个OTU(operational taxonoxic unit)在所有的霉豆渣样品中都存在,占OTU总数的0.59%,包含的序列数占总序列数的9.35%;有711 个OTU仅在1个霉豆渣样品中存在,占OTU总数的52.47%,包含的序列数分别占总序列数的6.34%;PICRUSt分析发现霉豆渣中细菌类群具有较强的碳水化合物的运输与代谢和氨基酸的转运与代谢。由此可见,霉豆渣中蕴含了丰富的微生物群系,且不同样品间细菌类群的差异较大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尚雪娇
方三胜
朱媛媛
赵慧君
郭壮
关键词:  霉豆渣  高通量测序  细菌多样性  基因功能预测    
Abstract: As a characteristic fermented soybean product in Hubei, Hunan and Western Jiangxi, Meitauza is naturally fermented from soybean residue. However, there are few reports on its bacterial diversity. In this study, high throughput sequencing technology was used to analyze the bacterial diversity in Meitauza, and the gene function of bacterial community was further predicted by PICRUSt software. The results showed that the bacteria in the Meitauza were mainly subordinate to Proteobacteria (46.50%), Firmicutes (38.80%), Bacteroidetes (12.62%) and Actinobacteria (1.81%); the dominant bacteria genera were Acinetobacter (17.27%), Pseudomonas (10.38%), Brevundimonas (4.03%), Stenotrophomonas (3.05%), Comamonas (2.52%), Enterococcus (1.09%), Bacillus (11.60%), Brevibacillus (2.41%), Lysinibacillus (21.15%), Wautersiella (8.68%), Sphingobacterium (2.17%) and Nocardia (1.36%); eight operational taxonomic units(OTUs) were present in all samples of Meitauza, accounting for 0.59% of the total OTUs and 9.35% of the total sequences; 711 OTUs were only present in one Meitauza sample, accounting for 52.47% of the total OTUs and 6.34% of the total sequences, respectively. PICRUSt analysis revealed that bacterial groups in Meitauza had strong ability in transport and metabolism of carbohydrates and amino acids. Abundant microorganism communities were found in Meitauza and significant differences exist among bacterial communities from different samples.
Key words:  Meitauza    high throughput sequencing    bacterial diversity    gene functional prediction
收稿日期:  2020-07-26      修回日期:  2020-09-02           出版日期:  2021-02-15      发布日期:  2021-03-08      期的出版日期:  2021-02-15
基金资助: 湖北省自然科学基金计划项目(2016CFB527)
作者简介:  硕士研究生(郭壮副教授为通讯作者,E-mail:guozhuang1984@163.com)
引用本文:    
尚雪娇,方三胜,朱媛媛,等. 霉豆渣细菌多样性解析及基因功能预测[J]. 食品与发酵工业, 2021, 47(3): 36-42.
SHANG Xuejiao,FANG Sansheng,ZHU Yuanyuan,et al. Bacterial diversity and prediction of gene function in Meitauza[J]. Food and Fermentation Industries, 2021, 47(3): 36-42.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025193  或          http://sf1970.cnif.cn/CN/Y2021/V47/I3/36
[1] 姜慧燕, 邹礼根,翁丽萍,等.豆渣营养成分分析及蛋白质营养价值评价[J].食品工业,2020,41(6):325-328.
JIANG H Y,ZOU L G,WENG L P,et al.Nutritional components analyzation and protein nutrition evaluation of soybean residue[J].The Food Industry,2020,41(6):325-328.
[2] 万茵, 王登骁,肖明,等.米根霉NCU1011发酵豆渣开发甜酱生产工艺研究[J].中国调味品,2020,45(4):24-28.
WAN Y,WANG D X,XIAO M,et al.Study on production technology of Rhizopus oryzae NCU1011 fermented soybean residue for developing sweet soybean paste[J].Chinese Condiment,2020,45(4):24-28.
[3] 徐书泽, 黄丽,滕建文,等.传统发酵霉豆渣中产酶优势菌的分离鉴定及性质研究[J].食品与发酵工业,2014,40(3):102-106.
XU S Z,HUANG L,TENG J W,et al.Isolation and identification of dominant microorganism in traditional fermentative Meidouzha and characterization of dominant strain[J].Food and Fermentation Industries,2014,40(3):102-106.
[4] 石威. 自然发酵豆渣中微生物分离、鉴定及混合发酵豆渣产品的研制[D].南昌:南昌大学,2012.
SHI W.Microbes isolation,identification of natural fermented okara and the products development of mixed fermented okara[D].Nanchang:Nanchang University,2012.
[5] 姚英政. 霉豆渣粑发酵过程中营养及风味成分变化研究[D].武汉:华中农业大学,2010.
YAO Y Z.Study on the changes in nutrition and flavor ingredients during soybean residue cakes fermentation[D].Wuhan:Huazhong Agricultural University,2010.
[6] 张燕鹏, 杨瑞金,王贺,等.传统豆渣菌的菌相分析及蛋白酶和纤维素酶主要产生菌株的鉴定[J].食品工业科技,2012,3(1):171-174.
ZHANG Y P,YANG R J,WANG H,et al.Analysis of the microflora and identification of the protease and cellulase producing strains from the traditional fermentative Douzhajun[J].Science and Technology of Food Industry,2012,3(1):171-174.
[7] LITTLEFAIR J E,CLARE E L.Barcoding the food chain:From Sanger to high-throughput sequencing[J].Genome,2016,59(11):946-958.
[8] LU S Y,ZUO T,ZHANG N,et al.High throughput sequencing analysis reveals amelioration of intestinal dysbiosis by squid ink polysaccharide[J].Journal of Functional Foods,2016,20(1):506-515.
[9] WAN H F,LIU T,SU C W,et al.Evaluation of bacterial and fungal communities during the fermentation of Baixi sufu,a traditional spicy fermented bean curd[J].Journal of the Science of Food and Agriculture,2020,100(4):1 448-1 457.
[10] TANG Y,ZHOU X,HUANG S,et al.Microbial community analysis of different qualities of pickled radishes by Illumina MiSeq sequencing[J].Journal of Food Safety,2019,39(2).DOI:10.111/jfs.12596.
[11] 赵馨馨, 崔梦君,董蕴,等.应用Illumina MiSeq高通量测序技术分析巴东地区豆瓣酱中微生物多样性[J].现代食品科技,2019,35(9):297-303.
ZHAO X X,CUI M J,DONG Y,et al.Analysis of microbial diversity in Badong bean paste by Illumina MiSeq high throughput sequencing technology[J].Modern Food Science and Technology,2019,35(9):297-303.
[12] 沈馨, 王艳,代凯文,等.基于Miseq高通量测序技术的辣椒酱核心细菌类群研究[J].食品研究与开发,2018,39(10):151-157.
SHEN X,WANG Y,DAI K W,et al.Characterization of core bacterial microflora in chilli sauce by Miseq high throughput sequencing technologies[J].Food Research and Development,2018,39(10):151-157.
[13] 尚雪娇, 马磊,余海忠,等.基于Miseq测序技术的琚湾酸浆面浆水真菌多样性评价[J].食品研究与开发,2018,39(16):158-163.
SHANG X J,MA L,YU H Z,et al.Study on the diversity of fungal microflora in Suanjiangmian Jiangshui of Juwan by Miseq sequencing[J].Food Research and Development,2018,39(16):158-163.
[14] CAPORASO J G,KUCZYNSKI J,STOMBAUGH J,et al.QIIME allows analysis of high-throughput community sequencing data[J].Nature Methods,2010,7(4):335-336.
[15] CAPORASO J G,BITTINGER K,BUSHMAN F D,et al.PyNAST:A flexible tool for aligning sequences to a template alignment[J].Bioinformatics,2010,26(2):266-267.
[16] EDGAR R C.Search and clustering orders of magnitude faster than BLAST[J].Bioinformatics,2010,26(19):2 460-2 461.
[17] DESANTIS T Z,HUGENHOLTZ P,LARSENN,et al.Greengenes,a chimera checked 16S rRNA gene database and workbench compatible with ARB[J].Applied and Environmental Microbiology,2006,72(7):5 069-5 072.
[18] COLE J R,CHAI B,FARRIS R J,et al.The ribosomal database project (RDP-II):Introducing myRDP space and quality controlled public data[J].Nucleic Acids Research,2007,35(1):169-172.
[19] PRICE M N,DEHAL P S,ARKIN A P.Fasttree:Computing large minimum evolution trees with profiles instead of a distance matrix[J].Molecular Biology and Evolution,2009,26(7):1 641-1 650.
[20] WILKINSON T J,HUWS S A,EDWARDS J E,et al.CowPI:A rumen microbiome focused version of the PICRUSt functional inference software[J].Frontiers in Microbiology,2018,9(5):1095.
[21] GALPERIN M Y,KRISTENSEN D M,MAKAROVA K S,et al.Microbial genome analysis:The COG approach[J].Briefings in Bioinformatics,2019,20(4):1 063-1 070.
[22] SCHOOLEY R T,BISWAS B,GILL J J,et al.Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection[J].Antimicrobial Agents and Chemotherapy,2017,61(10):1-14.
[23] DARCH S E,SIMOSKA O,FITZPATRICK M,et al.Spatial determinants of quorum signaling in a Pseudomonas aeruginosa infection model[J].Proceedings of the National Academy of Sciences of the United States America,2018,115(18):4 779-4 784.
[24] BOLZON C,NGUYEN B H.A rare case of peritonitis due to Brevundimonas vesicularis[J].Journal of Community Hospital Internal Medicine Perspectives,2018,8(3):161-162.
[25] BERDAH L,TAYTARD J,LEYRONNAS S,et al.Stenotrophomonas maltophilia:A marker of lung disease severity[J].Pediatric Pulmonology,2018,53(4):426-430.
[26] RUDAKIYA D M.Metal tolerance assisted antibiotic susceptibility profiling in Comamonas acidovorans[J].BioMetals,2018,31(1):1-5.
[27] 郑雯, 杨兴变,康冀川,等.赖氨酸芽孢杆菌He14发酵产物抗真菌活性的初步研究[J].食品与发酵工业,2019,45(18):22-26.
ZHENG W,YANG X B,KANG J C,et al.Antifungal activity of fermentation broth of Lysinibacillus fusiformis He14[J].Food and Fermentation Industries,2019,45(18):22-26.
[28] ZHANG J,GUO Z,XUE Z,et al.A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles,geography and ethnicities[J].The ISME Journal,2015,9(9):1 979-1 990.
[29] 向凡舒, 朱媛媛,邓风,等.建始地区米酒曲细菌和真菌多样性研究[J].食品工业科技,2020,42(14):1-10.
XIANG F S,ZHU Y Y,DENG F,et al.Study on bacterial and fungal diversity of rice wine koji in Jianshi Aera[J].Science and Technology of Food Industry,2020,42(14):1-10.
[30] 王玉荣, 沈馨,董蕴,等.鲊广椒细菌多样性评价及其对风味的影响[J].食品与机械,2018,34(4):25-30.
WANG Y R,SHEN X,DONG Y,et al.Characterization of bacterial microflora and their functions on flavor quality[J].Food and Machinery,2018,34(4):25-30.
[31] 李润生. 霉豆渣生产工艺的研究报告[J].食品科学,1982,3(9):43-46.
LI R S.Research report on the production technology of Meitauza[J].Food Science,1982,3(9):43-46.
[1] 邓祥宜, 李继伟, 何立超, 张原源, 黄国威, 鲍晓龙, 邱朝坤. 宣恩火腿发酵过程中表面微生物群落演替规律[J]. 食品与发酵工业, 2021, 47(7): 34-42.
[2] 刘梦琦, 朱媛媛, 倪慧, 王玉荣, 郭壮. 荆州地区霉豆渣真菌多样性研究[J]. 食品与发酵工业, 2021, 47(6): 241-246.
[3] 李娜, 崔梦君, 马佳佳, 雷炎, 郭壮, 张振东. 基于Illumina MiSeq测序和传统可培养方法的洪湖鲊广椒乳酸菌多样性研究[J]. 食品与发酵工业, 2021, 47(4): 110-115.
[4] 黄瑜, 杨帆, 李江华, 杨玉波, 堵国成, 王莉, 刘延峰. 小麦原料微生物组成对高温大曲风味的影响[J]. 食品与发酵工业, 2021, 47(20): 22-29.
[5] 任宇婷, 陈春利, 朱永亮, 郭昊翔, 陈忠军, 孙子羽, 满都拉. 广西扶绥酸粥中微生物组成及营养成分分析[J]. 食品与发酵工业, 2021, 47(20): 37-43.
[6] 魏建敏, 杨华连, 陈莉, 卢红梅, 石庆叠, 张祥瑞, 涂青. 基于高通量测序分析果桑茶对2型糖尿病模型小鼠肠道菌群的影响[J]. 食品与发酵工业, 2021, 47(20): 75-82.
[7] 王子媛, 宋庭羽, 邵毅君, 凌霞, 侯强川, 郭壮. 慈利和古丈地区酸肉细菌多样性差异研究及其功能预测[J]. 食品与发酵工业, 2021, 47(20): 126-132.
[8] 牟娟, 刘芳, 王兴洁, 刘爱平, 敖晓琳, 李建龙, 刘书亮. 胀气变质食醋理化指标及细菌多样性分析[J]. 食品与发酵工业, 2021, 47(20): 278-284.
[9] 王俊奇, 黄卫红, 李双彤, 袁建军, 陈洪彬, 马应伦, 张秋芳. 永春老醋不同生产阶段细菌和真菌多样性动态变化特征分析[J]. 食品与发酵工业, 2021, 47(2): 38-44.
[10] 张倩, 韩保林, 李子健, 谢军, 余东, 邹永芳, 郭辉祥, 文静, 张玲玲, 罗惠波, 黄丹. 浓香型白酒包包曲微生物种群多样性及形成机制[J]. 食品与发酵工业, 2021, 47(18): 99-106.
[11] 杨柳, 高良锋, 沈明浩, 姜斌, 任大勇. 朝鲜族辣白菜在自然发酵过程中菌群结构与主要呈味物质的相关性[J]. 食品与发酵工业, 2021, 47(17): 61-68.
[12] 周天慈, 何宏魁, 周庆伍, 曹润洁, 马叶胜, 杜海, 徐岩. 基于高通量扩增子测序技术解析中高温大曲微生物来源[J]. 食品与发酵工业, 2021, 47(16): 66-71.
[13] 杨放晴, 何丽英, 杨丹, 申梦园, 王福, 刘友平, 胡媛. 不同陈化时间广陈皮表面细菌和真菌多样性变化分析[J]. 食品与发酵工业, 2021, 47(15): 267-275.
[14] 张二豪, 赵润东, 禄亚洲, 尹秀, 蔡皓, 罗章. 藏东南产区葡萄和根际土壤细菌群落多样性[J]. 食品与发酵工业, 2021, 47(14): 100-106.
[15] 赵改名, 李珊珊, 崔文明, 祝超智, 王晗, 银峰, 焦阳阳, 李佳麒, 韩明山. 不同来源腊肉中细菌菌群结构与风味相关性分析[J]. 食品与发酵工业, 2021, 47(13): 246-253.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn