Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (4): 136-143    DOI: 10.13995/j.cnki.11-1802/ts.025196
  生产与科研应用 本期目录 | 过刊浏览 | 高级检索 |
拟蕈状芽孢杆菌Gxun-30产角蛋白酶液体发酵条件优化
张红岩1, 张妮1, 杨梦莹1, 刘聪2, 杨立芳2, 申乃坤1*, 姜明国1
1(广西民族大学 海洋与生物技术学院,广西多糖材料与改性重点实验室,广西高效微生物与植物资源利用重点实验室,广西 南宁,530006)
2(广西民族大学 化学化工学院,广西林产化学与工程重点实验室,广西 南宁,530006)
Optimization of liquid fermentation conditions of keratinase produced by Bacillus paramycoides Gxun-30
ZHANG Hongyan1, ZHANG Ni1, YANG Mengying1, LIU Cong2, YANG Lifang2, SHEN Naikun1*, JIANG Mingguo1
1(Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning 530006, China)
2(Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China)
下载:  HTML   PDF (9696KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高海洋来源拟蕈状芽孢杆菌(Bacillus paramycoides) Gxun-30产角蛋白酶的能力,该文利用单因素及响应面法对该菌产酶的培养基和培养条件进行了优化。先利用单因素试验对羽毛浓度、碳源、氮源、无机盐、初始pH值、发酵时间及接种量等影响菌株产酶条件进行了优化。结果表明,羽毛15 g/L、果糖10 g/L、玉米浆4.0 g/L、初始pH 6.5、氯化钙0.15 g/L、接种量 2.0%、接种发酵48 h 后酶活达到最高。再利用Plackett-Burman试验确定对菌株产酶有显著影响的3个因素为玉米浆、氯化钙及羽毛浓度;结合最陡爬坡及响应面试验优化方法对这3个显著因素进行优化,获得最优产酶条件为玉米浆8.17 g/L,氯化钙0.27 g/L,羽毛含量13.58 g/L,在此发酵条件下,模型预测角蛋白酶酶活为1 866.47 U/mL,验证试验实测值达到1 810.98 U/mL,较优化前酶活227.38 U/mL提高了7.96倍。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张红岩
张妮
杨梦莹
刘聪
杨立芳
申乃坤
姜明国
关键词:  拟蕈状芽孢杆菌  角蛋白酶  羽毛降解  响应面优化    
Abstract: In order to enhance the keratinase activity of marine sourced Bacillus paramycoides Gxun-30, the liquid culture medium and conditions were optimized by single factor experiment and response surface method. First, the effects of feathers concentration, carbon source, nitrogen source, inorganic salts, initial pH, fermentation time and inoculation amount on the keratinase production were investigated by single factor experiments. The optimal results corresponding to each single factor were: feathers concentration 15 g/L, fructose 10 g/L, corn steep liquor 4.0 g/L, initial pH 6.5, CaCl2 0.15 g/L, inoculation volume 2.0%, fermentation time 48 h. Secondly, using Plackett-Burman experiment, the main significant factors were identified as corn steep liquor, CaCl2 and feathers amount. Finally, the optimal levels of these three factors were determined with the steepest ascent experiment and response surface method. The optimal conditions for enzyme production were: corn steep liquor 8.17 g/L, CaCl2 0.27 g/L, and feathers amount 13.58 g/L. Under the optimized conditions, the keratinase activity was predicted as 1 866.47 U/mL. The measured keratinase activity reached 1 810.98 U/mL, which was 7.96 times of the initial keratinase activity 227.38 U/mL.
Key words:  Bacillus paramycoides    keratinase    feather-degrading    optimization    response surface methodology
收稿日期:  2020-07-28      修回日期:  2020-09-01           出版日期:  2021-02-25      发布日期:  2021-03-16      期的出版日期:  2021-02-25
基金资助: 国家自然科学基金(31660022;31660005);广西科技重点研发计划(AA18242026);广西自然科学基金(2018GXNSFAA28113;2019GXNSFAA185003);广西科技基地与人才专项(2017AD19029;AD18281066);广西民族大学相思湖青年学者创新团队(2017-6);广西民族大学科学研究项目(2018KJQD17)
作者简介:  高级工程师(申乃坤教授为通讯作者,E-mail:shennaik05@126.com)
引用本文:    
张红岩,张妮,杨梦莹,等. 拟蕈状芽孢杆菌Gxun-30产角蛋白酶液体发酵条件优化[J]. 食品与发酵工业, 2021, 47(4): 136-143.
ZHANG Hongyan,ZHANG Ni,YANG Mengying,et al. Optimization of liquid fermentation conditions of keratinase produced by Bacillus paramycoides Gxun-30[J]. Food and Fermentation Industries, 2021, 47(4): 136-143.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025196  或          http://sf1970.cnif.cn/CN/Y2021/V47/I4/136
[1] 张莹, 谷圣臣, 潘俊池, 等.基于ARIMA型的中国家禽出栏量预测[J].黑龙江八一农垦大学学报, 2020, 32(3):20-26.
ZHANG Y, GU S C, PAN J C, et al.Forecast of poultry production output in China with ARIMA model[J].Journal of Heilongjiang Bayi Agricultural University, 2020, 32(3):20-26.
[2] 柯野, 朱艳媚, 余国兴, 等.羽毛降解菌株Streptomyces sp.DJ产生的蛋白酶酶学性质[J].中山大学学报(自然科学版), 2017, 56(6):147-152.
KE Y, ZHU Y M, YU G X, et al.Characteristics of proteinases produced by a feather-degrading Streptomyces sp.DJ strian[J].Acta ScientiaRum Naturalium Universitatis Sunyatseni, 2017, 56(6):147-152.
[3] KALAIKUMARI S S, VENNILA T, MONIKA V, et al.Bioutilization of poultry feather for keratinase production and its application in leather industry[J].Journal of Cleaner Production, 2019, 208: 44-53.
[4] GRAZZIOTIN A, PIMENTEL F A, EVDE J, et al.Nutritional improvement of feather protein by treatment with microbial keratinase[J].Animal Feed Science and Technology.2006, 126(1):135-144.
[5] SHARMA S, GUPTA A.Sustainable management of keratin waste biomass:Applications and future perspectives[J].Brazilian Archives of Biology and Technology, 2016, 59:1-14.
[6] KSHETRI P, ROY S S, SHARMA S K, et al. Transforming chicken feather waste into feather protein hydrolysate using a newly isolated multifaceted keratinolytic bacterium Chryseobacterium sediminis RCM-SSR-7[J]. Waste and Biomass Valorization, 2019, 10(1): 1-11.
[7] ALAHYARIBEIK S, DAVOOD SHARIFI S, TABANDEH F, et al.Bioconversion of chicken feather wastes by keratinolytic bacteria[J].Process Safety and Environmental Protection, 2020, 135:171-178.
[8] 张妮, 张红岩, 杨梦莹, 等.一株海洋来源高效产角蛋白酶菌株的筛选、鉴定及其酶学性质研究[J].食品与发酵工业,2020,46(18):98-104.
ZHANG N, ZHANG H Y, YANG M Y, et al.Isolation and identification of a high efficient keratinase producing strain from marine environment and its enzymatic properties[J].Food and Fermentation Industries,2020,46(18):98-104.
[9] LI Q X.Progress in microbial degradation of feather waste[J].Frontiers in Microbiology, 2019, 10:2 717-2 732.
[10] ZHENG P, MAO X Z, ZHANG J, et al.Effective biodegradation of chicken feather waste by cocultivation of keratinase producing strains[J].Microbial Cell Factories, 18 (1):84.
[11] HAMICHE S, MECHRI S, KHELOUIA L, et al.Purification and biochemical characterization of two keratinases from Bacillus amyloliquefaciens S13 isolated from marine brown alga Zonaria tournefortii with potential keratin-biodegradation and hide-unhairing activities[J].International Journal of Biological Macromolecules, 2019, 122:758-769.
[12] RAMAKRISHNA R M, SATHI R K, RANJITA C Y, et al.Effective feather degradation and keratinase production by Bacillus pumilus GRK for its application as bio-detergent additive[J].Bioresoure Technology,2017, 243:254-263.
[13] MOUSAVI S, SALOUTI M, SHAPOURY R, et al.Optimization of keratinase production for feather degradation by Bacillus subtilis[J].Jundishapur Journal of Microbiology, 2013, 6(8):463-468.
[14] BOUACEM K, BOUANANEDARENFED A, LARIBIHABCHI H, et al.Biochemical characterization of a detergent stable serine alkaline protease from Caldicoprobacter guelmensis[J].International Journal of Biological Macromolecules, 2015, 81(1):299-307.
[15] RAMNANI P, GUPTA R.Optimization of medium composition for keratinase production on feather by Bacillus licheniformis RG1 using statistical methods involving response surfacemethodology[J].Applied Biochemistry and Biotechnology, 2004, 40(Pt2):191-196.
[16] 冀勇良, 朱传合, 刘丽英.短小芽孢杆菌产角蛋白酶液体发酵条件的优化[J].食品与发酵科技, 2014, 50(1):19-24.
JI Y L, ZHU C H, LIU L Y, et al.Optimization of liquid fermentation conditions of keratinase produced by Bacillus pumilus[J].Food and Fermentation Technology, 2014, 50(1):19-24
[17] 蒋彪, 王常高, 杜馨, 等.响应面法优化芽孢杆菌CJPE209产角蛋白酶发酵培养基的研究[J].中国酿造, 2017, 36(5):76-80.
JIANG B, WANG C G, DU X, et al.Optimization of fermentation medium for keratinase production from Bacillus sp.CJPE209 using response surface methodology[J].China Brewing, 2017, 36(5):76-80.
[18] YAMAMURA S, MORITA Y, HASAN Q, et al.Characterization of a new keratin-degrading bacterium isolated from deer fur[J].Journal of Bioscience and Bioengineering, 2002, 93(6):595-600.
[19] 卢超, 陈景鲜, 王国霞, 等.枯草芽孢杆菌L07产中性蛋白酶发酵条件优化[J].食品与发酵工业,2020,46(16):,148-153.
LU C, CHEN J X, WANG G X, et al.Optimization of fermentation conditions for neutral protease produced by Bacillus subtilis L07[J].Food and Fermentation Industries,2020,46(16):,148-153.
[20] 申乃坤, 王青艳, 陆雁, 等.响应面法优化耐高温酵母生产高浓度乙醇[J].生物工程学报, 2010, 26(1):42-47.
SHEN N K, WANG Q Y, LU Y, et al.Enhancing ethanol production using thermophilic yeast by response surface methodology[J].Chinese Journal of Biotechnology, 2010, 26(1):42-47.
[21] TAMREIHAO K, MUKHERJEE S, KHUNJAMAYUM R, et al.Feather degradation by keratinolytic bacteria and biofertilizing potential for sustainable agricultural production[J].Journal of Basic Microbiology, 2019, 59(1):4-13.
[22] GUPTA R, RAMNANI P.Microbial keratinases and their prospective applications:An overview[J].Applied Microbiology and Biotechnology, 2006, 70(1):21-33.
[23] AROKIYARAJ S, VARGHESE R, AHMED B A, et al.Optimizing the fermentation conditions and enhanced production of keratinase from Bacillus cereus isolated from halophilic environment[J].Saudi Journal of Biological Sciences, 2019, 26(2):378-381.
[24] 朱耀霞, 马德源, 毕玉平, 等.枯草芽胞杆菌FJ-3-16产角蛋白酶条件优化及在生猪脱毛中的应用[J].农业生物技术学报, 2018, 26(2):346-356.
ZHU Y X, MA D Y, BI Y P, et al.Optimization of culture conditions for keratinase production by Bacillus subtilis FJ-3-16 and its application in pig (Sus scrofa) dehairing[J].Journal of Agricultural Biotechnology, 2018, 26(2):346-356.
[25] ABDEL-FATTAH A M, EL-GAMAL M S, ISMAIL S A, et al.Biodegradation of feather waste by keratinase produced from newly isolated Bacillus licheniformis ALW1[J].Journal of Genetic Engineering and Biotechnology, 2018, 16(2):311-318.
[1] 顾欣, 高涛, 刘梦雅, 丛之慧, 张诚雅, 肖乐艳, 李迪, 胡景涛. 梁平柚柚皮多糖的提取、结构解析及抗氧化能力研究[J]. 食品与发酵工业, 2021, 47(7): 137-145.
[2] 张敏倩, 刘功良, 费永涛, 白卫东, 艾连中, 俞剑燊. 利用蜂蜜接合酵母合成海藻糖[J]. 食品与发酵工业, 2021, 47(3): 107-113.
[3] 赵志军, 张艳珠, 刘延波, 周平平, 葛少华, 孙西玉. 高产酯化酶细菌的复合诱变选育及固态发酵条件优化[J]. 食品与发酵工业, 2021, 47(2): 174-181.
[4] 邝嘉华, 黄燕燕, 胡金双, 余佳佳, 周钦育, 赵珊, 刘冬梅. 解淀粉芽孢杆菌DMBA-K4高产胞外多糖的发酵条件优化及其抗氧化活性研究[J]. 食品与发酵工业, 2020, 46(22): 28-35.
[5] 张妮, 张红岩, 杨梦莹, 刘聪, 杨立芳, 申乃坤, 姜明国. 一株海洋来源高效产角蛋白酶菌株的筛选、鉴定及其酶学性质研究[J]. 食品与发酵工业, 2020, 46(18): 98-104.
[6] 冒鑫哲, 彭政, 周冠宇, 堵国成, 张娟. 枯草芽孢杆菌高产角蛋白酶发酵条件优化[J]. 食品与发酵工业, 2020, 46(17): 138-144.
[7] 陈永浩, 李霁昕, 冯丽丹, 张祯, 把灵珍, 崔媛媛, 张煜, 蒋玉梅. 沙棘、梨混合果汁配方研发及稳定剂配比优化[J]. 食品与发酵工业, 2020, 46(16): 141-147.
[8] 王姣, 王绒雪, 张晋华, 王蓓, 曹雁平. 乳扇加工工艺优化及其风味成分分析[J]. 食品与发酵工业, 2019, 45(23): 189-198.
[9] 朱霞建, 谈安群, 范佳莹, 李则灵, 周琦, 易鑫, 李贵节, 郭莉, 谭祥, 黄林华, 王华. 甜橙果肉渣发酵酒工艺条件优化及其品质分析[J]. 食品与发酵工业, 2019, 45(21): 207-214.
[10] 范佳莹, 李则灵, 朱霞建, 谈安群, 易鑫, 周琦, 谭祥, 黄林华, 王华. 柚皮纳米纤维素的制备工艺优化及形态特征[J]. 食品与发酵工业, 2019, 45(20): 202-208.
[11] 杨森, 涂宗财, 王辉, 胡月明. 超微细化草鱼制备高钙午餐鱼肉罐头及工艺优化[J]. 食品与发酵工业, 2019, 45(18): 202-208.
[12] 颜琳, 姜双双, 闫欣, 姚艳艳, 常丽荣, 李长青. 皱纹盘鲍腹足抗氧化肽的制备及其工艺优化[J]. 食品与发酵工业, 2019, 45(17): 123-128.
[13] 陈丹阳, 张振洋, 黎剑, 王志翠, 徐立华, 孙付保. 枯草芽孢杆菌发酵玉米黄粉制备可溶性肽[J]. 食品与发酵工业, 2019, 45(14): 78-83.
[14] 宋晶晶,田歌,吴浩天,刘荣刚,李俊波,马露露,黄若兰,童婷,武运. 响应面试验优化葡萄籽鹰嘴豆复合饮料稳定剂配方[J]. 食品与发酵工业, 2017, 43(8): 197-.
[15] 马文瑞,魏玉洁,邹弯,吴浩天,田歌,王德良,马静,高林龙,武运,薛洁. 新疆葡萄酒高产酸酿酒酵母茵的筛选和发酵条件优化[J]. 食品与发酵工业, 2017, 43(7): 134-.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn