Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (5): 28-34    DOI: 10.13995/j.cnki.11-1802/ts.025255
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
屎肠球菌源谷氨酸脱羧酶的制备及其酶学性质研究
杨胜远1*, 林谦2, 刘淑敏1, 苏巧云1, 黄慧玲1
1(岭南师范学院 食品科学与工程学院, 广东 湛江, 524048)
2(玉林师范学院 生物与制药学院, 广西 玉林, 537000)
Preparation and characterization of glutamate decarboxylase from Enterococcus faecium
YANG Shengyuan1*, LIN Qian2, LIU Shumin1, SU Qiaoyun1, HUANG Huiling1
1(College of Food Science and Engineering, Lingnan Normal University, Zhanjiang 524048, China)
2(College of Biology and Pharmacy, Yulin Normal University, Yulin 537000, China)
下载:  HTML   PDF (2581KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了开发谷氨酸脱羧酶(glutamate decarboxylase, GAD), 以Enterococcus faeciumgadB基因供体、纤维素结合域(cellulose-binding domain, CBD)为亲和标签, 利用内含肽DnaB自剪切作用分离GAD, 对融合酶CBD-DnaB-GAD的构建、表达、GAD纯化及其酶学性质进行了探讨。结果表明:重组Escherichia coli GDMCC60446可高效表达CBD-DnaB-GAD, 适宜自剪切液为0.2 mol/L Na2HPO4-NaH2PO4缓冲液(pH 6.5, 含NaCl 0.5 mol/L、EDTA 1 mmol/L);经一步纯化和自剪切制备的GAD在SDS-PAGE电泳上呈单一条带, 分子质量约为55.68 kDa, 仅有1个亚基;GAD最适反应pH和温度分别为5.0和55 ℃, 在pH 4.8~5.8和-25~55 ℃较稳定;5 mmol/L的NaCl、CaCl2和乙二醇对GAD酶活力影响不大, 而KCl、EDTA-2Na、ZnSO4、CuSO4、MnSO4、MgSO4、FeCl2、FeCl3、AlCl3、AgNO3和Pb(CH3COO)2对GAD酶活力具有不同程度的抑制作用;GAD仅催化L-谷氨酸发生脱羧反应, KmVmax分别为10.51 mmol/L和3.41 μmol/(mL·min), 催化反应无底物和产物抑制作用。GAD纯度和酶学性质优良, 制备工艺简便, 该技术有望应用于工业化生产。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨胜远
林谦
刘淑敏
苏巧云
黄慧玲
关键词:  屎肠球菌  谷氨酸脱羧酶  纤维素结合域  内含肽  酶学性质    
Abstract: To develop high-quality glutamate decarboxylase (GAD), the affinity of cellulose-binding domain (CBD) and the self-cleavage of DnaB (an intein) were used for the construction of CBD-DnaB-GAD fusion enzyme using Enterococcus faecium as gadB donor, and the purification of GAD and its enzymatic properties were also investigated. The results showed that recombinant Escherichia coli GDMCC60446 carrying pRPOCDN-EfagadB could efficiently express CBD-DnaB-GAD, and the optimal solution for self-cleavage of DnaB was 0.2 mol/L phosphate buffer saline (pH 6.5, containing 0.5 mol/L NaCl and 1 mmol/L EDTA). The GAD, prepared by one-step purification and self-cleavage, showed a single band on SDS-PAGE electrophoresis with a molecular weight of 55.68 kDa, and consists of only one subunit. The purified GAD showed maximum activity at pH 5.0 and 55 ℃, and was stable at the range of pH 4.8 to 5.8 and -25 to 55 ℃. Its activity was hardly affected by 5 mmol/L of NaCl, CaCl2 or ethylene glycol, but was inactivated by 5 mmol/L of KCl, EDTA-2Na, ZnSO4, CuSO4, MnSO4, MgSO4, FeCl2, FeCl3, AlCl3, AgNO3 or Pb(CH3COO)2 at different levels. The purified GAD only catalyzed the decarboxylation of L-glutamic acid with apparent Km and Vmax at 10.51 mmol/L and 3.41 μmol/(mL·min) respectively, and the reaction activities were not inhibited by the substrate and product. The purity and enzymatic properties of GAD were excellent, and the preparation process was simple. Due to the high purity and excellent enzymatic properties of GAD, as well as the simple preparation process, this technology has potential to be applied to industrial production.
Key words:  Enterococcus faecium    glutamate decarboxylase    cellulose-binding domain    intein    enzymatic property
收稿日期:  2020-08-03      修回日期:  2020-09-05                发布日期:  2021-03-31      期的出版日期:  2021-03-15
基金资助: 农业农村部水产品加工重点实验室开放基金项目(NYJG201903);广东省自然科学基金项目(2014A030307039);岭南师范学院科研专项(ZL1602)
作者简介:  博士, 教授(通讯作者, E-mail:yangsy1972@163.com)
引用本文:    
杨胜远,林谦,刘淑敏,等. 屎肠球菌源谷氨酸脱羧酶的制备及其酶学性质研究[J]. 食品与发酵工业, 2021, 47(5): 28-34.
YANG Shengyuan,LIN Qian,LIU Shumin,et al. Preparation and characterization of glutamate decarboxylase from Enterococcus faecium[J]. Food and Fermentation Industries, 2021, 47(5): 28-34.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025255  或          http://sf1970.cnif.cn/CN/Y2021/V47/I5/28
[1] VILLEGAS J M, BROWN L, DE GIORI G S, et al.Optimization of batch culture conditions for GABA production by Lactobacillus brevis CRL 1942, isolated from quinoa sourdough[J].LWT-Food Science and Technology, 2016, 67:22-26.
[2] 杨成丽, 马子玉, 胡晓丽, 等.化学-酶催化法制备D-谷氨酸与γ-氨基丁酸[J].化学与生物工程, 2013, 30(11):55-56.
YANG C L, MA Z Y, HU X L, et al.Production of D-glutamic acid and γ-aminobutyric acid using chem-enzymic method[J].Chemistry and Bioengineering, 2013, 30(11):55-56.
[3] ZHU H, SADIQ F A, LI Y, et al.Application of ion-exchange resin as solid acid for buffer-free production of γ-aminobutyric acid using Enterococcus faecium cells[J].LWT-Food Science and Technology, 2018, 98:341-348.
[4] 杨胜远, 李云.双向单因素与田口法优化屎肠球菌产谷氨酸脱羧酶培养基[J].食品科学, 2018, 39(4):90-98.
YANG S Y, LI Y.Optimization of fermentation medium for glutamate decarboxylase production by Enterococcus faecium by bidirectional One-Factor-at-a-Time and Taguchi methods[J].Food Science, 2018, 39(4):90-98.
[5] YANG S Y, LIU S M, JIANG M, et al.Enhancing effect of macroporous adsorption resin on gamma-aminobutyric acid production by Enterococcus faecium in whole-cell biotransformation system[J].Amino Acids, 2020, 52(5):771-780.
[6] DIVYASHRI G, PRAPULLA S G.An insight into kinetics and thermodynamics of gamma-aminobutyric acid production by Enterococcus faecium CFR3003 IN batch fermentation[J].Annals of Microbiology, 2015, 65:1 109-1 118.
[7] YANG S Y, LIN Q, LU Z X, et al.Characterization of a novel glutamate decarboxylase from Streptococcus salivarius ssp.thermophilus Y2[J].Journal of Chemical Technology & Biotechnology, 2008, 83(6):855-861.
[8] CHEN K J, WU Y T, LEE C K.Cellulose binding domain fusion enhanced soluble expression of fructosyl peptide oxidase and its simultaneous purification and immobilization[J].International Journal of Biological Macromolecules, 2019, 133:980-986.
[9] JONES R W, PEREZ F G.A small cellulose-binding-domain protein (CBM1) in Phytophthora is highly variable in the non-binding amino terminus[J].Current Microbiology, 2017, 74:1 287-1 293.
[10] MNDEZ-LTER J A, GIL-MUOZ J, NIETO-DOMNGUEZ M, et al.A novel, highly efficient β-glucosidase with a cellulose-binding domain:characterization and properties of native and recombinant proteins[J].Biotechnology for Biofuels, 2017, 10:256-271.
[11] BULAKHOV A G, GUSAKOV A V, ROZHKOVA A M, et al.Properties of chimeric polysaccharide monooxygenase with an attached cellulose binding module and its use in the hydrolysis of cellulose-containing materials in the composition of cellulase complexes[J].Catalysis in Industry, 2018, 10(2):152-158.
[12] RICHINS R D, MULCHANDANI A, CHEN W.Expression, immobilization, and enzymatic characterization of cellulose-binding domain-organophosphorus hydrolase fusion enzymes[J].Biotechnology and Bioengineering, 2015, 69(6):591-596.
[13] LIN Q, LI D, QIN H.Molecular cloning, expression, and immobilization of glutamate decarboxylase from Lactobacillus fermentum YS2[J].Electronic Journal of Biotechnology, 2017, 27:8-13
[14] MATHYS S, EVANS T C, CHUTE I C, et al.Characterization of self-splicing mini-intein and its conversion into autocatalytic N-and C-terminal cleavage elements:Facile production of protein building blocks for protein ligation[J].Gene, 1999, 231(1/2):1-13.
[15] HONG J, WANG Y, YE X, et al.Simple protein purification through affinity adsorption on regenerated amorphous cellulose followed by intein self-cleavage[J].Journal of Chromatography A, 2008, 1194:150-154.
[16] ZHAO Z L, LU W, DUN B Q, et al.Purification of green fluorescent protein using a two-intein system[J].Applied Microbiology and Biotechnology, 2008, 77(5):1 175-1 180.
[17] 杨胜远, 林谦, 赖丽萍, 等.屎肠球菌纤维素结合域谷氨酸脱羧酶构建及其酶学性质[J].食品与发酵工业, 2019, 45(21):22-30.
YANG S Y, LIN Q, LAI L P, et al.Construction and characteristics of recombinant cellulose-binding domain-glutamate decarboxylase of Enterococcus faecium[J].Food and Fermentation Industries, 2019, 45(21):22-30.
[18] 杨胜远, 林谦, 张晓宁, 等.大肠杆菌高效表达屎肠球菌纤维素结合域谷氨酸脱羧酶的条件优化[J].食品与机械, 2019, 35(7):31-38.
YANG S Y, LIN Q, ZHANG X N, et al.Optimization of conditions for efficient expression of recombinant cellulose-binding domain-glutamate decarboxylase of Enterococcus faecium in Escherichia coli[J].Food and Machinery, 2019, 35(7):31-38.
[19] HONG J, YE X, WANG Y, et al.Bioseparation of recombinant cellulose-binding module-proteins by affinity adsorption on an ultra-high-capacity cellulosic adsorbent[J].Analytica Chimica Acta, 2008, 621(2):193-199.
[20] STRAUSBAUCH P H, FISCHER E H.Chemical and physical properties of Escherichia coli glutamate decarboxylase[J].Biochemistry, 1970, 9(2):226-232.
[21] SEO M J, NAM Y D, LEE S Y, et al.Expression and characterization of a glutamate decarboxylase from Lactobacillus brevis 877G producing γ-aminobutyric acid[J].Bioscience, Biotechnology, and Biochemistry, 2013, 77(4):853-856.
[22] KOMATSUZAKI N, NAKAMURA T, KIMURA T, et al.Characterization of glutamate decarboxylase from a high γ-aminobutyric acid (GABA)-producer, Lactobacillus paracasei[J].Bioscience, Biotechnology, and Biochemistry, 2008, 72(2):278-285.
[23] SA H D, PARK J Y, JEONG S J, et al.Characterization of glutamate decarboxylase (GAD) from Lactobacillus sakei A156 isolated from Jeot-gal[J].Journal of Microbiology & Biotechnology, 2015, 25(5):696-703.
[24] LIU Q, CHENG H, MA X, et al.Expression, characterization and mutagenesis of a novel glutamate decarboxylase from Bacillus megaterium[J].Biotechnology Letters, 2016, 38:1 107-1 113.
[25] DE BIASE D, TRAMONTI A, BOSSA F, et al.The response to stationary-phase stress conditions in Escherichia coli:Role and regulation of the glutamic acid decarboxylase system[J].Molecular Microbiology, 1999, 32(6):1 198-1 211.
[1] 张恕铭, 曾林, 孙向阳, 汪杰, 孙擎, 张庆, 谭霄. 屎肠球菌与植物乳杆菌共培养产γ-氨基丁酸条件优化及关键酶活性研究[J]. 食品与发酵工业, 2021, 47(9): 154-159.
[2] 陶大炜, 宁喜斌. 产α-环糊精葡萄糖基转移酶的菌株筛选、鉴定与酶学性质的初步研究[J]. 食品与发酵工业, 2021, 47(6): 145-151.
[3] 宋婷, 王帅静, 汪沉, 吕育财, 罗华军, 郭金玲, 龚大春. 近平滑假丝酵母ATCC 7330羰基还原酶CpCR的表达及酶学性质研究[J]. 食品与发酵工业, 2021, 47(3): 18-24.
[4] 于洁, 徐勤茜, 李子院, 刘红艳, 郝再彬, 李海云. 虎杖内生真菌Aspergillus aculeatus HZ001产β-葡萄糖苷酶的酶学特性[J]. 食品与发酵工业, 2021, 47(3): 31-35.
[5] 包怡, 胡友明, 朱林江, 陆跃乐, 陈小龙. 己糖氧化酶的研究进展[J]. 食品与发酵工业, 2021, 47(3): 218-223.
[6] 魏万涛, 李梦丽, 江波, 张涛. L-岩藻糖激酶/GDP-L-岩藻糖焦磷酸化酶的克隆表达及酶学性质研究[J]. 食品与发酵工业, 2020, 46(9): 18-24.
[7] 张庆芳, 王浚晨, 于爽, 刘春莹, 迟雪梅, 迟乃玉. 人体肠道中产尿酸氧化酶细菌的筛选、鉴定与酶学性质研究[J]. 食品与发酵工业, 2020, 46(8): 34-39.
[8] 宋丽丽, 闻格, 霍姗浩, 胡晓龙, 杨旭, 张志平. 白酒酒糟中产纤维素酶细菌的分离筛选和酶学性质研究[J]. 食品与发酵工业, 2020, 46(7): 43-49.
[9] 郑丹妮, 柏玉香, 纪杭燕, 李晓晓, 王禹, 蔣彤, 金征宇. γ-CGTase酶学性质及产物特异性影响因素[J]. 食品与发酵工业, 2020, 46(5): 38-45.
[10] 郑亚伦, 夏瑛, 李良, 董孝元, 方尚玲, 陈茂彬, 李琴. 源于解淀粉芽孢杆菌酸性木聚糖酶酶学性质的研究[J]. 食品与发酵工业, 2020, 46(24): 58-65.
[11] 周海岩, 周建宝, 易晓男, 李勉, 柳志强. 来源于Rhodohalobacter barkolensis的昆布多糖酶RbLam16的重组表达及生产条件优化[J]. 食品与发酵工业, 2020, 46(21): 9-15.
[12] 庞翠萍, 刘松, 周景文, 张国强, 李江华. 细菌脂肪氧合酶酶学性质分析及表达优化[J]. 食品与发酵工业, 2020, 46(19): 1-8.
[13] 张妮, 张红岩, 杨梦莹, 刘聪, 杨立芳, 申乃坤, 姜明国. 一株海洋来源高效产角蛋白酶菌株的筛选、鉴定及其酶学性质研究[J]. 食品与发酵工业, 2020, 46(18): 98-104.
[14] 高慧, 刘松. 谷氨酰胺转氨酶活化蛋白酶在大肠杆菌中的表达及性质研究[J]. 食品与发酵工业, 2020, 46(15): 1-7.
[15] 田康明, 赵继华, 牛丹丹, NokuthulaPeaceMCHUNU, 王彩喆, 王正祥. 高转苷活性乳糖酶编码基因的克隆与酶学特征研究[J]. 食品与发酵工业, 2020, 46(15): 8-13.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn