Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (2): 254-259    DOI: 10.13995/j.cnki.11-1802/ts.025288
  分析与检测 本期目录 | 过刊浏览 | 高级检索 |
基于近红外光谱的桃果实冷害识别分析
张珮1,2,3, 王银红1,2,3, 李高阳1,2,3, 单杨1,2,3, 朱向荣1,2,3*
1(湖南大学 研究生隆平分院,湖南 长沙,410125)
2(湖南省农业科学院农产品加工研究所,湖南 长沙,410125)
3(果蔬贮藏加工及质量安全湖南省重点实验室,湖南 长沙,410125)
Identification of chilling injury of peach fruit based on near infrared spectroscopy
ZHANG Pei1,2,3, WANG Yinhong1,2,3, LI Gaoyang1,2,3, SHAN Yang1,2,3, ZHU Xiangrong1,2,3*
1(Longping Branch,Graduate School of Hunan University,Changsha 410125,China)
2(Agricultural Products Processing Institute,Hunan Academy of Agricultural Sciences Changsha 410125,China)
3(Hunan Key Lab of Fruits &Vegetables Storage,Processing,Quality and Safety,Changsha 410125,China)
下载:  HTML   PDF (4213KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 该文采用近红外(near infrared,NIR)光谱技术对水蜜桃低温冷害褐变进行识别分析。分别建立了水蜜桃低温贮藏期间不同冷害阶段的两分类和多分类模型,讨论了不同光谱预处理方法对模型的影响,并比较偏最小二乘判别分析(partial least squares-discriminant analysis,PLS-DA)、主成分判别分析(principal component discriminant analysis,PCA-DA)、K-最邻近(K-nearest neighbor,K-NN)、簇类独立软模式(soft independent modeling of class analogy,SIMCA)4种建模方法的分类效果。结果表明,采用 PLS-DA 模型效果最好,两分类和多分类模型的总准确率为分别为 0.93和 0.71。两分类模型可较准确地对冷害褐变进行快速识别分类,多分类模型可用于水蜜桃低温贮藏期间不同冷害阶段的初步筛查。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张珮
王银红
李高阳
单杨
朱向荣
关键词:  水蜜桃  近红外光谱  低温冷害  化学计量学  分类模型    
Abstract: The chilling injury of juicy peach caused by low temperature was identified and analyzed by near infrared (NIR) spectroscopy.In this paper,two-classification and multi-classification models of different chilling injury stages of juicy peach were established during low temperature storage,and the effects of different spectral pretreatment methods on the model were discussed.The classification performance of partial least squares discriminant analysis (PLS-DA),principal component discriminant analysis (PCA-DA),K-nearest neighbor (K-NN) and SIMCA modeling methods were compared.The results showed that the performance of PLS-DA model was the best,and the total accuracy of two-classification model and multi-classification model were 0.93 and 0.71,respectively.The two-classification model could be used for rapid and accurate identification of cold injury browning,while multi-classification model could be used for preliminary screening of different chilling injury stages of juicy peach during low temperature storage.
Key words:  juicy peach    near infrared spectroscopy    chilling injury    chemometrics    classification mode
收稿日期:  2020-08-06      修回日期:  2020-08-18           出版日期:  2021-01-25      发布日期:  2021-02-07      期的出版日期:  2021-01-25
基金资助: “十三五”国家重点研发计划(2017YFD0401303);长株潭国家自主创新专项(2018XK2006);湖南省农业科学院科技创新项目(2019JG01;2019TD04)
作者简介:  硕士研究生(朱向荣副研究员为通讯作者,E-mail:xiangrongchu@163.com)
引用本文:    
张珮,王银红,李高阳,等. 基于近红外光谱的桃果实冷害识别分析[J]. 食品与发酵工业, 2021, 47(2): 254-259.
ZHANG Pei,WANG Yinhong,LI Gaoyang,et al. Identification of chilling injury of peach fruit based on near infrared spectroscopy[J]. Food and Fermentation Industries, 2021, 47(2): 254-259.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025288  或          http://sf1970.cnif.cn/CN/Y2021/V47/I2/254
[1] 李培中,许丽,何惠霞,等.1株水蜜桃采后病害拮抗细菌的鉴定及抑菌作用[J].食品科学,2019,40(2):102-109.
LI P Z,XU L,HE H X,et al.Identification and antifungal activity of an antagonistic strain against postharvest disease in honey peach[J].Food Science,2019,40(2):102-109.
[2] LIU H,CAO J K,JIANG W B.Changes in phenolics and antioxidant property of peach fruit during ripening and responses to 1-methylcyclopropene[J].Postharvest Biology and Technology,2015,108:111-118.
[3] LI H,FAN Y W,ZHI H,et al.Influence of fruit stalk on reactive oxygen species metabolism and quality maintenance of peach fruit under chilling injury condition[J].Postharvest Biology and Technology,2019,148:141-150.
[4] BRUMMELL D A,CIN V D,LURIE S,et al.Cell wall metabolism during the development of chilling injury in cold-stored peach fruit:Association of mealiness with arrested disassembly of cell wall pectins[J].Journal of Experimental Botany,2004,55(405):2 041-2 052.
[5] PAN L Q,QIANG Z,WEI Z,et al.Detection of cold injury in peaches by hyperspectral reflectance imaging and artificial neural network[J].Food Chemistry,2016,192:134-141.
[6] 翟小童.猕猴桃冷害近红外无损定性检测研究[J].中国食品工业,2012(11):71-74.
ZHAI X T.Study on near infrared nondestructive qualitative detection of chilling injury of kiwifruit[J].China Food Industry,2012(11):71-74.
[7] XIA J,YANG Y W,CAO H X,et al.Visible-near infrared spectrum-based classification of apple chilling injury on cloud computing platform[J].Computers and Electronics in Agriculture,2018,145:27-34.
[8] 耿红兰.壳聚糖和变温处理对砂糖橘冷害的控制及其近红外光谱检测[D].晋中:山西农业大学,2015:39-44.
GENG H L.Controlling injury of shatangju with chitosan coating and change temperature treatment and nondestuctive examination with near infrared spectroscopy[D].Jinzhong:Shanxi Agricultural University,2015:39-44.
[9] HUANG Y P,LU R F,CHEN K J.Detection of internal defect of apples by a multichannel Vis/NIR spectroscopic system[J].Postharvest Biology and Technology,2020,161:111 065.
[10] 冯磊,郑永华,汪峰,等.茉莉酸甲酯处理对冷藏水蜜桃品质的影响[J].食品科学,2003,24(9):135-139.
FENG L,ZHENG Y H,WANG F,et al.Effects study on MeJA treatment for cold storage of peache[J].Food Science,2003,24(9):135-139.
[11] 王巧华,李小明,段宇飞.基于CUVE-PLS-DA的鸡蛋新鲜度在线检测分级[J].食品科学,2016,37(22):187-191.
WANG Q H,LI X M,DUAN Y F,et al.On-line detection and classification of egg freshness based on consensus uninformative variable elimination-partial least squares-discriminant analysis (CUVE-PLS-DA)[J].Food Science,2016,37(22):187-191.
[12] 郭珍珠.基于光谱技术的茶叶等级判别研究[D].温州:温州大学,2019:18-21.
GUO Z Z.Tea grade discrimination research based on spectral technology[D].Wenzhou:Wenzhou University,2019:18-21.
[13] JWORKMAN J,WEYER J L.近红外光谱解析实用指南[M].北京:化学工业出版社,2009.
JWORKMAN J,WEYER J L.Practical Guide to Interpretive Near Infrared Spectroscopy[M].Beijing:Chemical Industry Publishing House,2009.
[14] 周慧娟,苏明申,叶正文,等.桃果实采后生理生化及冷害研究进展[J].果树学报,2017(9):1 204-1 212.
ZHOU H J,SU M S,YE Z W,et al.Advances in the research into physiological and biochemical characteristics and chilling injury of peach fruits after harvest[J].Journal of Fruit Science,2017(9):1 204-1 212.
[15] KENNARD R W,STONE L A.Computer aided design of experiments[J].Technometrics,2012,11(1):137-148.
[16] XIA J,YANG Y W,CAO H X,et al.Visible-near infrared spectrum-based classification of apple chilling injury on cloud computing platform[J].Computers and Electronics in Agriculture,2018,145:27 -34.
[17] YE S,GU X Z,KE S,et al.Hyperspectral reflectance imaging combined with chemometrics and successive projections algorithm for chilling injury classification in peaches[J].LWT,2017,75:557-564.
[18] 董高,郭建,王成,等.基于近红外高光谱成像及信息融合的小麦品种分类研究[J].光谱学与光谱分析,2015(12):3 369-3 374.
DONG G,GUO J,WANG C,et al.The classification of wheat varieties based on near infrared hyperspectral imaging and information fusion[J].Spectroscopy and Spectral Analysis,2015(12):3 369-3 374.
[19] 朱向荣,李高阳,秦燕华,等.近红外光谱结合模式识别技术快速鉴别煎炸油质量[J].中国食品学报,2016(12):206-211.
ZHU X R,LI G Y,QIN Y H,et al.Rapid detection for the quality of frying oil using near infrared spectroscopy and pattern discrimination techniques[J].Journal of Chinese Institute of Food Science and Technology,2016(12):206-211.
[20] 湛燕.K-近邻、K-均值及其在文本分类中的应用[D].保定:河北大学,2003:8-13.
ZHAN Y.K-NN,K-means and the application in text mining[D].Baoding:Hebei University,2003:8-13.
[21] 戚淑叶,单婕,WONG T,等.西洋参原材料近红外光谱精选研究[J].仪器仪表学报,2012(6):1 435-1 440.
QI S Y,SHAN J,WONG T,et al.Research on sifting of American ginseng as raw material with near infrared spectroscopy[J].Chinese Journal of Scientific Instrument,2012(6):1 435-1 440.
[22] 朱向荣,李高阳,黄绿红,等.近红外光谱与化学计量学方法用于镉污染稻米的定性鉴别[J].分析化学,2015(4):599-603.
ZHU X R,LI G Y,HUANG L H,et al.Near infrared spectroscopy combining with chemometrics for qualitative identification of cadmium-polluted rice[J].Chinese Journal of Analytical Chemistry,2015(4):599-603.
[23] 卢万鸿,齐杰,罗建中.近红外光谱桉树杂交种鉴别[J].光谱学与光谱分析,2019(5):1 451-1 457.
LU W H,QI J,LUO J Z.Application of NIRs for discrimination of eucalyptus hybrids[J].Spectroscopy and Spectral Analysis,2019(5):1 451-11 457.
[24] 朱向荣,李高阳,江靖,等.基于多类别的镉稻米近红外光谱识别分析[J].中国食品学报,2019(5):263-269.
ZHU X R,LI G Y,JIANG J,et al.Rapid discrimination for cadmium-polluted rice based on near infrared spectroscopy and multi-classification algorithm[J].Journal of Chinese Institute of Food Science and Technology,2019(5):263-269.
[25] 张小燕,杨炳南,曹有福,等.近红外光谱的马铃薯环腐病SIMCA模式识别[J].光谱学与光谱分析,2018(8):2 379-2 385.
ZHANG X Y,YANNG B N,CAO Y F,et al.SIMCA discrimination of ring rot potatoes based on near infrared spectroscopy[J].Spectroscopy and Spectral Analysis,2018(8):2 379-2 385.
[1] 江亿平, 卞贝, 张兆同, 潘磊庆, 汪小旵. 基于聚核模糊分类的多指标水蜜桃成熟度判别[J]. 食品与发酵工业, 2021, 47(9): 174-182.
[2] 杨晨昱, 袁鸿飞, 马惠玲, 任亚梅, 任小林. 基于傅里叶近红外光谱和电子鼻技术的苹果霉心病无损检测[J]. 食品与发酵工业, 2021, 47(7): 211-216.
[3] 谢关华, 陆安霞, 欧阳珂, 孟庆, 童华荣. GC-MS结合化学计量学用于探究六大茶类香气形成的差异[J]. 食品与发酵工业, 2021, 47(20): 260-270.
[4] 王新怡, 杨鸿博, 张一敏, 董鹏程, 罗欣, 毛衍伟. 肉类品质快速无损分析技术的研究进展[J]. 食品与发酵工业, 2021, 47(11): 279-286.
[5] 蔡德玲, 唐春华, 梁玉英, 曾川, 彭碧宁. 融合近红外光谱和颜色参数的草莓可溶性固形物含量定量分析模型构建[J]. 食品与发酵工业, 2020, 46(7): 218-224.
[6] 盛晓慧, 李宗朋, 李子文, 朱婷婷, 王健, 尹建军, 宋全厚. 近红外光谱技术定量检测果味啤中的果汁含量[J]. 食品与发酵工业, 2020, 46(4): 247-252.
[7] 谈爱玲, 王晓斯, 楚振原, 赵勇. 基于近红外光谱融合与深度学习的玉米成分定量建模方法[J]. 食品与发酵工业, 2020, 46(23): 213-219.
[8] 郝超, 赵忠盖, 刘飞. 基于近红外光谱的柠檬酸发酵液化清液概率偏最小二乘法监控[J]. 食品与发酵工业, 2020, 46(20): 214-220.
[9] 孟庆龙, 尚静, 黄人帅, 陈露涛, 张艳. 苹果可溶性固形物的可见/近红外无损检测[J]. 食品与发酵工业, 2020, 46(19): 205-209.
[10] 唐保山, 李坤, 张雯雯, 史正军, 关庆芳, 徐涓, 马金菊, 刘兰香, 张弘. 近红外漫反射光谱结合偏最小二乘法对紫胶理化指标的快速测定[J]. 食品与发酵工业, 2020, 46(18): 236-244.
[11] 于怀智, 姜滨, 孙传虎, 陈东杰, 王忠强, 张玉华, 郭风军, 张长峰. 顶空气相离子迁移谱技术对不同产地水蜜桃的气味指纹分析[J]. 食品与发酵工业, 2020, 46(16): 231-235.
[12] 于怀智, 陈东杰, 姜沛宏, 张玉华, 郭风军, 张长峰. 近红外光谱对蒙阴黄桃硬度和可溶性固形物的在线检测[J]. 食品与发酵工业, 2020, 46(14): 216-221.
[13] 连思雨, 谢瑜杰, 张紫娟, 范春林, 王明林, 陈辉. 多元素分析结合化学计量学方法快速判别宁夏和青海枸杞[J]. 食品与发酵工业, 2020, 46(13): 250-254.
[14] 易宇文, 胡金祥, 杨进军, 刘阳, 彭毅秦, 吴华昌, 乔明锋, 邓静. 基于电子鼻和气质联用分析郫县豆瓣对鱼香调味汁的风味贡献[J]. 食品与发酵工业, 2019, 45(7): 276-283.
[15] 张鹏, 陈帅帅, 李江阔, 李博强, 徐勇. 采用近红外光谱进行采后苹果品种及货架期定性判别[J]. 食品与发酵工业, 2019, 45(19): 200-205.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn