Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (5): 48-56    DOI: 10.13995/j.cnki.11-1802/ts.025425
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
天冬多糖理化性质和流变学特性研究
李梦钰, 刘会平*, 贾琦, 吴亚茹
(食品营养与安全国家重点实验室, 天津科技大学 食品科学与工程学院, 天津 300457)
Physicochemical properties and rheological properties of asparagi radix polysaccharide
LI Mengyu, LIU Huiping*, JIA Qi, WU Yaru
(State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China)
下载:  HTML   PDF (2925KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以野生天冬块根为原料, 通过水提醇沉法得到天冬多糖(asparagi radix polysaccharide, ARP), 研究其理化性质和流变学特性。结果表明, ARP中总糖含量为(93.75±1.68)%, 总糖醛酸含量为(26.99±0.97)%, 酯化度为(38.2±0.14)%, 重均分子量为730 kDa。ARP由鼠李糖(Rha)、阿拉伯糖(Ara)、半乳糖(Gal)、葡萄糖(Glc)、木糖(Xyl)、甘露糖(Man)6种单糖和半乳糖醛酸(GalA)、葡萄糖醛酸(GlcA)2种糖醛酸组成, 物质的量比是0.27∶1.39∶4.42∶12.66∶1∶0.50∶4.83∶0.29。扫描电镜和原子力显微镜观察发现ARP构象为球形聚集状, 表面结构紧致平滑。X-衍射结果表明ARP结晶度低。热学特性结果显示ARP具有较高的热稳定性。流变学结果表明, 温度、质量浓度、盐离子(Na+和Ca2+)的种类和浓度对ARP的黏度和剪切应力均有影响, 且作用方式不同。ARP溶液的黏度随着剪切速率的增加呈现下降趋势, 出现剪切稀化现象, 表明ARP溶液属于非牛顿流体。研究结果为天冬多糖在食品和医药等领域的开发利用提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李梦钰
刘会平
贾琦
吴亚茹
关键词:  天冬  多糖  结晶性能  热学特性  理化性质  流变特性    
Abstract: The root tuber of wild asparagi radix was used as raw material for the extraction of asparagi radix polysaccharide (ARP) by water extraction and alcohol precipitation method. The physicochemical and rheological properties of ARP were studied. The purity, the average molecular weight (Mw), the esterification degree and the chemical composition of polysaccharides were determined. Additionally, the crystallization properties, thermal properties and the effects of different factors on the apparent viscosity and shear stress of ARP were also been studied. In the meantime, the dynamic rheological properties of ARP were explored. The results indicated that the content of total polysaccharide, the total uronic acid content, the esterification degree and the average molecular weight of polysaccharide were (93.75±1.68)%, (26.99±0.97)%, (38.2±0.14)% and 730 kDa respectively. ARP was composed of six monosaccharides (Rha, Ara, Gal, Glc, Xyl, Man) and two uronic acids (GalA, GlcA) in a molar ratio of 0.27∶1.39∶4.42∶12.66∶0.50∶0.50∶4.83∶0.29. The results of scanning electron microscope and atomic force microscope showed that the conformation of ARP was spherical and aggregated, and the surface was compact and smooth. Moreover, X-ray diffraction illustrated that the crystallinity of ARP was low. The thermal properties suggested that ARP had high thermal stability. In addition, the rheological analysis demonstrated that temperature, mass concentration, type and concentration of salt ions (Na+ and Ca2+) had an influence on the changes of the viscosity and shear stress, and their mechanisms were different. As the shear rate increased, the viscosity of ARP solution decreased. The phenomenon of shear-thinning indicated that ARP solution belonged to a non-Newtonian fluid. The analysis results are expected to provide a theoretical basis for the development and utilization of Asparagi radix polysaccharide in food and medicine fields.
Key words:  asparagi radix    polysaccharide    crystallization property    thermal property    physicochemical property    rheological property
收稿日期:  2020-08-20      修回日期:  2020-09-14                发布日期:  2021-03-31      期的出版日期:  2021-03-15
作者简介:  硕士研究生(刘会平教授为通讯作者, E-mail:liuhuiping111@163.com)
引用本文:    
李梦钰,刘会平,贾琦,等. 天冬多糖理化性质和流变学特性研究[J]. 食品与发酵工业, 2021, 47(5): 48-56.
LI Mengyu,LIU Huiping,JIA Qi,et al. Physicochemical properties and rheological properties of asparagi radix polysaccharide[J]. Food and Fermentation Industries, 2021, 47(5): 48-56.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025425  或          http://sf1970.cnif.cn/CN/Y2021/V47/I5/48
[1] 国家药典委员会. 中华人民共和国药典 3部 [M].北京:中国医药科技出版社, 2010.
Chinese Pharmacopoeia Commission.Pharmacopoeia of the People's Republic of China (Edition 3) [M].Beijing:China Medical Science and Technology Press, 2010.
[2] CHOI J Y, KIM J E, PARK J J, et al.The Anti-inflammatory effects of fermented herbal roots of asparagus cochinchinensis in an ovalbumin-induced asthma model[J].Journal of Clinical Medicine, 2018, 7(10):377.
[3] 宫兆燕, 张君利.天冬活性化合物的提取及其药理活性研究进展[J].医学综述, 2018, 24(24):4 938-4 942.
GONG Z Y, ZHANG J L.Research progress of active compounds extraction in asparagus and its pharmacological activity[J].Medical Recapitulate, 2018, 24(24):4 938-4 942.
[4] JIAN R, ZENG K W, LI J, et al.Anti-neuroinflammatory constituents from Asparagus cochinchinensis[J].Fitoterapia, 2013, 84:80-84.
[5] SUN Q, ZHU L, LI Y, et al.A novel inulin-type fructan from Asparagus cochinchinensis and its beneficial impact on human intestinal microbiota[J].Carbohydrate Polymers, 2020, 247:116 761.
[6] ZHU G L, HAO Q, LI R T, et al.Steroidal saponins from the roots of Asparagus cochinchinensis[J].Chinese Journal of Natural Medicines, 2014, 12(3):213-217.
[7] JALSRAI A, NUMAKAWA T, KUNUGI H, et al.The neuroprotective effects and possible mechanism of action of a methanol extract from asparagus cochinchinensis:In vitro and in vivo studies[J].Neuroscience, 2016, 322:452-463.
[8] CHEN Y J, JIANG X, XIE H Q, et al.Structural characterization and antitumor activity of a polysaccharide from Ramulus mori[J].Carbohydrate Polymers, 2018, 190:232-239.
[9] ZHANG W S, HE W Z, SHI X D, et al.An Asparagus polysaccharide fraction inhibits MDSCs by inducing apoptosis through toll-like receptor 4[J].Phytotherapy Research, 2018, 32(7):1 297-1 303.
[10] 汤小蕾. 天冬多糖对小鼠免疫功能影响的实验研究[J].中医药导报, 2014, 20(10):83-84.
TANG X L.Study on the effects of Asparagus cochinchinensis polysaccharide on immunity function in mice[J].Guiding Journal of Traditional Chinese Medicine and Pharmacy, 2014, 20(10):83-84.
[11] 翁苓苓, 高玲, 张闽光.天冬多糖低氧下抑制肝癌作用的体外实验研究[J].现代中西医结合杂志, 2019, 28(24):2 623-2 628.
WENG L L, GAO L, ZHANG M G.Anticancer effects of deproteinized asparagus polysaccharide on hepatocellular carcinoma cells in hypoxia in vitro[J].Modern Journal of Integrated Traditional Chinese and Western Medicine, 2019, 28(24):2 623-2 628.
[12] 程伟, 程紫薇, 邢东炜, 等.天冬多糖逆转缺氧诱导的上皮间质转换抑制人肝癌细胞迁移[J].辽宁中医杂志, 2019, 46(10):2 127-2 130.
CHENG W, CHENG Z W, XING D W, et al.Asparagus polysaccharides suppress migration of human hepatocellular carcinoma cells by reversing epithelial-mesenchymal[J].Liaoning Journal of Traditional Chinese Medicine, 2019, 46(10):2 127-2 130.
[13] 李志孝, 黄成钢, 陈谦, 等.天门冬半乳葡聚糖的化学结构及其抑瘤活性的研究[J].兰州大学学报, 2000, 36(5):77-81.
LI Z X, HUANG C G, CHEN Q, et al.Studies on chemical constitution and antitumor activity of galacto-glucan from Asparagus cochinchinensis[J].Journal of Lanzhou University(Natural Sciences), 2000, 36(5):77-81.
[14] DUBOIS M, GILLES K A, HAMILTON J K, et al.Colorimetric method for determination of sugars and related substances[J].Analytical Chemistry, 1956, 28(3):350-356.
[15] BLUMENKRANTZ N, ASBOE-HANSEN G.New method for quantitative determination of uronic acids[J].Analytical Biochemistry, 1973, 54(2):484-489.
[16] BAI L L, ZHU P L, WANG W B, et al.The influence of extraction pH on the chemical compositions, macromolecular characteristics, and rheological properties of polysaccharide:The case of okra polysaccharide[J].Food Hydrocolloids, 2020, 102:105 586.
[17] XIAO Q, TONG Q, LIM L-T.Pullulan-sodium alginate based edible films:Rheological properties of film forming solutions[J].Carbohydrate Polymers, 2012, 87(2):1 689-1 695.
[18] RAO M A.Rheology of fluid and semisolid foods-principle and applications[M].2nd Ed.New York:Springer Science+Business Media, 2007.
[19] WANG J Q, NIE S P.Application of atomic force microscopy in microscopic analysis of polysaccharide[J].Trends in Food Science & Technology, 2018, 87:35-46.
[20] LIU W, WANG H, YU J P, et al.Structure, chain conformation, and immunomodulatory activity of the polysaccharide purified from Bacillus calmette Guerin formulation[J].Carbohydrate Polymers, 2016, 150:149-158.
[21] JEDDOU K B, CHAARI F, MAKTOUF S, et al.Structural, functional, and antioxidant properties of water-soluble polysaccharides from potatoes peels[J].Food Chemistry, 2016, 205:97-105.
[22] QIAN J Y, CHEN W, ZHANG W M, et al.Adulteration identification of some fungal polysaccharides with SEM, XRD, IR and optical rotation:A primary approach[J].Carbohydrate Polymers, 2009, 78(3):620-625.
[23] SHEHATA M G, DARWISH A M G, EL-SOHAIMY S A.Physicochemical, structural and functional properties of water-soluble polysaccharides extracted from Egyptian agricultural by-products[J].Annals of Agricultural Sciences, 2020, 65(1):21-27.
[24] CHIU M H, BEREZOWSKI N S, PRENNER E J.7-DSC applications:Macromolecules[J].Drug-Biomembrane Interaction Studies, 2013:237-263.DOI:10.1533/9781908818348.237
[25] PAWAR H A, LALITHA K G.Isolation, purification and characterization of galactomannans as an excipient from Senna tora seeds[J].International Journal of Biological Macromolecules, 2014, 65:167-175.
[26] KTARI N, BKHAIRIA I, NASRI M, et al.Structure and biological activities of polysaccharide purified from Senegrain seed[J].International Journal of Biological Macromolecules, 2020, 144:190-197.
[27] YE J F, HUA X, ZHAO Q Y, et al.Chain conformation and rheological properties of an acid-extracted polysaccharide from peanut sediment of aqueous extraction process[J].Carbohydrate Polymers, 2020, 228:115 410.
[28] KRONGSIN J, GAMONPILAS C, METHACANON P, et al.On the stabilisation of calcium-fortified acidified soy milks by pomelo pectin[J].Food Hydrocolloids, 2015, 50:128-136.
[29] CAO L, LU W, MATA A, et al.Egg-box model-based gelation of alginate and pectin:A review[J].Carbohydrate Polymers, 2020, 242:116 389.
[30] CHOI Y, LEE Y, CHANG Y H.Structural and rheological properties of pectic polysaccharide extracted from Ulmus davidiana esterified by succinic acid[J].International Journal of Biological Macromolecules, 2018, 120:245-254.
[31] NIE X R, LI H Y, DU G, et al.Structural characteristics, rheological properties, and biological activities of polysaccharides from different cultivars of okra (Abelmoschus esculentus) collected in China[J].International Journal of Biological Macromolecules, 2019, 139:459-467.
[32] LEE Y K, JUNG S K, CHANG Y H.Rheological properties of a neutral polysaccharide extracted from maca (Lepidium meyenii Walp.) roots with prebiotic and anti-inflammatory activities[J].International Journal of Biological Macromolecules, 2020, 152:757-765.
[1] 史瑛, 冯欣静, 周志磊, 姬中伟, 徐岳正, 毛健. 黄酒多糖对炎症性肠病及便秘作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(9): 275-283.
[2] 刘志芳, 赵前程, 刘志东, 段蕊, 林娜, 张俊杰. 贝类多糖研究进展[J]. 食品与发酵工业, 2021, 47(9): 299-306.
[3] 周启萍, 张兆云, 袁翔, 申红梅, 张志华, 李霞, 马筱菡, 杨富民. 啤特果果汁流变学特性研究[J]. 食品与发酵工业, 2021, 47(8): 76-81.
[4] 周雯, 庄蕾, 吴森. 植物多糖在Ⅱ型糖尿病降血糖作用方面的研究进展[J]. 食品与发酵工业, 2021, 47(8): 290-296.
[5] 姚丽文, 周宇芳, 孙继鹏, 王家星, 廖妙飞, 郑斌, 王芮, 邓尚贵, 相兴伟. 厚壳贻贝多糖对葡聚糖硫酸钠诱导的结肠炎改善作用[J]. 食品与发酵工业, 2021, 47(7): 109-115.
[6] 顾欣, 高涛, 刘梦雅, 丛之慧, 张诚雅, 肖乐艳, 李迪, 胡景涛. 梁平柚柚皮多糖的提取、结构解析及抗氧化能力研究[J]. 食品与发酵工业, 2021, 47(7): 137-145.
[7] 刘婷, 周欣, 赵超, 龚小见, 陈华国. 植物多糖对肾损伤干预效果及作用机制研究进展[J]. 食品与发酵工业, 2021, 47(7): 269-277.
[8] 张晓晓, 柴智, 冯进, 崔莉, 李春阳, 李莹, 黄午阳. 牛蒡多糖的提取及生物活性研究进展[J]. 食品与发酵工业, 2021, 47(6): 280-288.
[9] 吴唯娜, 冯洁茹, 方静宇, 邵平, 孙培龙, 徐靖, 李振皓. 铁皮石斛酶解多糖对姜黄素乳液功能性质的影响[J]. 食品与发酵工业, 2021, 47(5): 63-70.
[10] 杨燕敏, 郑振佳, 高琳, 张砚垒, 张仁堂. 红枣多糖超声波提取、结构表征及抗氧化活性评价[J]. 食品与发酵工业, 2021, 47(5): 120-126.
[11] 殷娴, 邵蕾娜, 廖永红, 王凤寰. 微生物富集有机硒研究进展[J]. 食品与发酵工业, 2021, 47(5): 259-266.
[12] 弘子姗, 谭超, 杨宁. 体外模拟发酵对咖啡理化性质及品质的影响[J]. 食品与发酵工业, 2021, 47(4): 54-59.
[13] 彭明芳, 李培骏, 单杨, 陈玉秋, 杨岱峻, 雷丽嫦, 黄芝辉, 余孔新. 比较基因组揭示广西酸菜乳杆菌碳水化合物活性酶谱[J]. 食品与发酵工业, 2021, 47(4): 68-73.
[14] 陆娟, 谢东雪, 贺柳洋, 王月, 郑志艳. 洋甘菊多糖的分离纯化、性质结构及抗氧化活性分析[J]. 食品与发酵工业, 2021, 47(3): 72-78.
[15] 方静宇, 谢华凌, 冯思敏, 李振皓, 李明焱, 徐靖, 邵平. 石斛多糖改善糖尿病作用的影响因素及机制研究进展[J]. 食品与发酵工业, 2021, 47(3): 237-244.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn